人脸对齐
文章平均质量分 78
Eason.wxd
我是Eason,我喂自己袋盐...
展开
-
人脸对齐(一)--定义及作用
参考:http://www.thinkface.cn/thread-4354-1-1.htmlhttp://www.thinkface.cn/thread-4488-1-1.html人脸对齐任务即根据输入的人脸图像,自动定位出面部关键特征点,如眼睛、鼻尖、嘴角点、眉毛以及人脸各部件轮廓点等,如下图所示。 这项技术的应用很广泛,比如自动人脸识别,表情识别以及人脸动画...原创 2016-09-17 14:09:09 · 45580 阅读 · 24 评论 -
人脸对齐(十一)--PIFA2015
Pose-Invariant 3D Face Alignment(PIFA2015) 文章主要解决随意姿态变化、非正脸的人脸特征点定位问题,另外还针对没有大姿态人脸库的问题建立了包含各种各样大姿态变化的人脸库。创新之处:提出了一个新的人脸特征点定位算法,该算法主要估计2D和3D特征点以及任意姿态人脸的2D特征点的可见性。通过3D形变模型,设计一个级联双回归方法来估计相机映射矩阵和3D...原创 2018-08-21 14:09:38 · 5728 阅读 · 0 评论 -
人脸对齐(十二)--PIFA2017
Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting(PIFA2017)本文基于1中的PIFA,都可以定位任意姿态的人脸特征点,但是不同之处在于PIFA采用随机蕨作为回归器评估映射参数和3D人脸形状参数,而本篇文章采用基于CNN的回归器来评估映射参数和3D人脸形状参数。本篇文章的核心主要是提出了一个新的3DMM...原创 2018-08-21 14:11:25 · 5852 阅读 · 0 评论 -
人脸对齐(十三)--3DDFA
Face Alignment Across Large Poses: A 3D Solution(3DDFA2015)本篇文章针对的问题:1).一般的人脸特征点定位模型都是基于可见的特征点训练得到的所以不适合侧脸的特征点定位。2).从正脸到侧脸的大姿态变化导致人脸外观也产生巨大的变化3).在大姿态下标注不可见的人脸特征点存在巨大的挑战。解决方案:提出了一个新的人脸对齐框架3...原创 2018-08-21 14:13:00 · 20674 阅读 · 4 评论 -
人脸对齐(十四)--LPFA
Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting(LPFA)作者试图使用3D人脸建模解决大姿态下面部特征点定位问题。其实跟PIFA2017差不多,双回归架构,3DMM模型,唯一不同的是级联CNN的细节上,以及设计的特征上。2D的人脸形状U可以看成是3D人脸形状A通过投影变化m得到,如下图所示: 3D人脸形状模型可以表...原创 2018-08-21 14:16:40 · 6220 阅读 · 0 评论 -
人脸对齐(十五)--PIFA with a Single CNN
Pose-Invariant Face Alignment with a Single CNN4.3 FPS on a Titan X GPU本文是解决 large-pose face alignment (LPFA)的,所谓的 large face poses 如 profile views with ±90 度 yaw angles针对大姿态的人脸对齐问题,目前主流的方法是采用 a ...转载 2018-08-21 14:18:21 · 5902 阅读 · 0 评论 -
人脸对齐(十六)--DenseFA
Dense Face Alignment ICCVW2017http://cvlab.cse.msu.edu/project-pifa.htmlMatConvNet codemodel can run at real time during testing这里针对人脸对齐问题,我们采用 Dense Face Alignment (DeFA) 密集人脸对齐的策略,providing a ...转载 2018-08-21 14:19:21 · 6294 阅读 · 0 评论 -
人脸对齐(十七)--DenseReg
DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild原文: CVPR 2017摘要: 在本文中,我们提出通过完全卷积网络学习从图像像素到密集模板网格的映射。我们将此任务作为一个回归问题,并利用手动注释的面部标注来训练我们的网络。我们使用这样的标注,在三维对象模板和输入图像之间,建立密集的对应领域,然后作为训练我们的回归...原创 2018-08-21 14:23:09 · 6622 阅读 · 0 评论 -
人脸对齐(十八)--Joint Face Alignment and 3D Face Reconstruction
Joint Face Alignment and 3D Face Reconstruction(2016) 本文主要提出了一种新的方法来解决任意姿态和表情的2D人脸图片的特征点定位和3D人脸重构。该方法采用两个级联回归,一个回归用来更新2D特征点,另一个回归用来更新重构的姿态-表情3D人脸形状。3D与2D人脸形状之间是通过3D-2D的映射矩阵相关联起来的。在每一次迭代中,首先通过一个特征点回归...原创 2018-08-21 14:24:13 · 7899 阅读 · 0 评论 -
人脸对齐(十九)--Regressing a 3D Face Shape from a Single Image
Regressing a 3D Face Shape from a Single Image主要提出了对一张单独的图片进行3D人脸特征点定位的方法。该方法基于一个级联回归框架直接在3D中对人脸特征点进行定位。本文还提出了一个简单的头部姿态估计方法。单步3D人脸形状估计:之前的一些方法都是采用两步骤,首先检测出2D人脸特征点,然后通过将3D模型拟合到检测出的2D人脸特征点上,然后进行3D人脸...原创 2018-08-21 14:49:16 · 6340 阅读 · 1 评论 -
人脸对齐(十)--人脸对齐综述(综述及2D人脸对齐总结2018.8)
转自:https://blog.csdn.net/zhangjunhit/article/details/78435972 略删改(红色为个人理解,不对之处,欢迎指正)Face Alignment In-the-Wild: A SurveyComputer Vision and Image Understanding Volume 162, September 2017, Pages 1-2...转载 2018-08-17 15:55:19 · 16668 阅读 · 3 评论 -
人脸对齐(二)--ASM算法
原文:ASM(active shape models)算法介绍http://www.thinkface.cn/thread-2-1-1.htmlASM是基于统计学习模型的特征点提取的一种方法。这个方法是95年就提出来的,不过至今仍是我认为比较好的人脸特征点提取的方案。方法的提出人Tim Cootes后来还提出了aam算法,也很有名,但如果简单是特征点的定位的话,我认为asm的效果可能更好一...转载 2016-09-18 10:27:20 · 12979 阅读 · 1 评论 -
人脸对齐(三)--AAM算法
原文:http://blog.csdn.net/colourfulcloud/article/details/9774017AAM(Active Appearance Model)主动外观模型主要分为两个阶段,模型建立阶段和模型匹配阶段。其中模型建立阶段包括了对训练样本分别建立形状模型(Shape Model)和纹理模型(Texture Model),然后将两个模型进行结合,形成AAM...转载 2016-09-18 10:43:53 · 13458 阅读 · 2 评论 -
人脸对齐(五)--ESR算法
原文:http://www.thinkface.cn/thread-2911-1-2.html 原文翻译我看的好蛋疼,完全机器翻译。甚至怀疑作者是否有通读过一次。。。。这里再修改下。现在回头看看,好像自己也看不懂了。。。补充一份:https://blog.csdn.net/stayfoolish_fan/article/details/50455359我们提出了一种非常有效、高准确率的...原创 2016-09-18 11:34:09 · 12455 阅读 · 0 评论 -
人脸对齐(四)--CLM算法及概率图模型改进
原文:http://blog.csdn.net/marvin521/article/details/11489453 04、概率图模型应用实例 最近一篇文章《Deformable Model Fitting by Regularized Landmark Mean-Shift》中的人脸点检测算法在速度和精度折中上达到了一个相对不错的水平,这篇技术报告就来阐述下这...转载 2016-09-18 10:55:10 · 9414 阅读 · 0 评论 -
人脸对齐(八)--LBF算法
整体来看,其实 ,ESR是基础版本的形状回归,ERT将回归树修改为GBDT,由原始的直接回归形状,改进为回归形状残差,而LBF,是加速特征提取,由原来的像素差分特征池,改为随机选择点。 转自:http://blog.csdn.net/qq_14845119/article/details/53575091基于LBF方法的人脸对齐,出自Face Alignment at3000 FPS ...转载 2017-11-29 10:35:10 · 7322 阅读 · 1 评论 -
人脸对齐(六)--ERT算法
1.概述文章名称:One Millisecond Face Alignment with an Ensemble of Regression Trees文章来源:2014CVPR文章作者:Vahid Kazemi ,Josephine Sullivan简要介绍:One Millisecond Face Alignment with an Ensemble of Regression Tr...转载 2017-11-29 10:02:12 · 11039 阅读 · 7 评论 -
人脸对齐(九)--SDM算法
转自:http://blog.csdn.net/huneng1991/article/details/51901912http://blog.csdn.net/qq_14845119/article/details/53520847略删改。 SDM(Supervised Descent Method)是一种监督下降方法,属于解决非线性最小化NLS(Non-linear Least ...转载 2017-11-29 14:34:00 · 9455 阅读 · 1 评论 -
人脸对齐(七)--JDA算法
其实,这里JDA之前在人脸检测中解释过,这里再转一篇的目的在于,此文更贴近论文,同时,JDA本来包含人脸检测和人脸对齐,作为一个整体训练和测试的。转自:http://blog.csdn.net/shixiangyun2/article/details/50809078第一节: 关键思想是将人脸检测和人脸标点结合起来。一个应用比较广泛的人脸检测方法,Viola-Jones检测器是...转载 2017-11-29 10:27:44 · 6342 阅读 · 1 评论 -
人脸对齐(二十一)--A Recurrent Encoder-Decoder Network for Sequential Face Alignment
转自:https://blog.csdn.net/shuzfan/article/details/52438910本次介绍一篇关于人脸关键点检测(人脸对齐)的文章:《ECCV16 A Recurrent Encoder-Decoder Network for Sequential Face Alignment》.作者主页:https://sites.google.com/site/xi...转载 2018-08-22 15:26:12 · 6266 阅读 · 1 评论 -
人脸对齐(二十)--PRN
Joint3D Face Reconstruction and Dense Alignment with Position Map Regression(PRN2018)我们从之前的论文可以看出,基本的3D人脸对齐,稠密人脸对齐,人脸重建,主要分两个方向,一是3DMM+特征的方式训练人脸模型和投影矩阵(PIFAs,3DDFA等),另外一个方向就是训练像素级点对点映射(3D空间人脸和2D图像人脸...原创 2018-08-21 14:55:19 · 8334 阅读 · 5 评论