题目
给你一个大小为 rows x cols
的矩阵 mat
,其中 mat[i][j]
是 0
或 1
,请返回 矩阵 *mat
* 中特殊位置的数目 。
特殊位置 定义:如果 mat[i][j] == 1
并且第 i
行和第 j
列中的所有其他元素均为 0
(行和列的下标均 从 0 开始 ),则位置 (i, j)
被称为特殊位置。
示例 1:
输入:mat = [[1,0,0],
[0,0,1],
[1,0,0]]
输出:1
解释:(1,2) 是一个特殊位置,因为 mat[1][2] == 1 且所处的行和列上所有其他元素都是 0
示例 2:
输入:mat = [[1,0,0],
[0,1,0],
[0,0,1]]
输出:3
解释:(0,0), (1,1) 和 (2,2) 都是特殊位置
示例 3:
输入:mat = [[0,0,0,1],
[1,0,0,0],
[0,1,1,0],
[0,0,0,0]]
输出:2
示例 4:
输入:mat = [[0,0,0,0,0],
[1,0,0,0,0],
[0,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,1]]
输出:3
提示:
rows == mat.length
cols == mat[i].length
1 <= rows, cols <= 100
mat[i][j]
是0
或1
思路
- 使用两个数组保存当前行和当前列的1的数量
- 遍历矩阵,更新数组
- 再次遍历,若行列都为1,返回值+1
代码
class Solution:
def numSpecial(self, mat: List[List[int]]) -> int:
row = [0] * len(mat)
col = [0] * len(mat[0])
ret = 0
for i in range(len(mat)):
for j in range(len(mat[0])):
if mat[i][j] == 1:
row[i] += 1
col[j] += 1
for i in range(len(mat)):
for j in range(len(mat[0])):
if row[i] == col[j] == 1 and mat[i][j] == 1: ret += 1
return ret
复杂度
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( n ) O(n) O(n)