(动态规划)leetcode-152. 乘积最大子数组

文章讨论了一个使用动态规划解决寻找数组中最大乘积子数组的问题。通过维护Max和Min两个数组,考虑正负数相乘的情况,状态转移方程为Max[i]=max(nums[i]*Max[i-1],nums[i]*Min[i-1],nums[i])和Min[i]=min(nums[i]*Max[i-1],nums[i]*Min[i-1],nums[i]),最终返回Max数组中的最大值。
摘要由CSDN通过智能技术生成

题目链接:力扣

 本题显然也是动态规划的思路,假设Max[i]是以i为结尾的子数组的最大乘积,即Max[i]=max(nums[j]*```*nums[i]),其中0<=j<i<nums.size()。则显然,Max[i]与Max[i-1]有关。首先考虑

Max[i]=max(nums[i],Max[i-1]*nums[i])

这与“和最大子数组”的动态规划转移方程相似,而放在乘积最大的情形下并不适用。因为如果求和最大,那么Max[i]有以下几种情况:

1. nums[i]>0, Max[i-1]>0 --> Max[i]=Max[i-1]+nums[i]=max(nums[i],Max[i-1]+nums[i])

2. nums[i]<=0, Max[i-1]>0 --> Max[i]=Max[i-1]+nums[i]=max(nums[i],Max[i-1]+nums[i])

3. nums[i]>0, Max[i-1]<=0 --> Max[i]=nums[i]=max(nums[i],Max[i-1]+nums[i])

4. nums[i]<=0, Max[i-1]<=0 --> Max[i]=nums[i]=max(nums[i],Max[i-1]+nums[i])

因此可以整理出Max[i]=max(nums[i],Max[i-1]+nums[i])。

而对于乘积的情况,若出现了负数,就显然不能套用上面的公式。举个例子:

nums={1,2,-3,-6}

显然

Max={1,2,-3,36}

而若用Max[i]=max(nums[i],Max[i-1]*nums[i])来计算,就会出现

Max={1,2,-3,18}

很显然,在num[i]<0的情况下,我们不应该考虑Max[i-1],而应该考虑Min[i-1],即我们希望乘一个绝对值最大的负数,这样负负得正,才能得到最合适的Max[i];而对于nums[i]>0的情况,就希望找到一个绝对值最大的正数,相乘才能得到最合适的Max[i]。因此需要多维护一个Min数组。状态转移方程如下:

Max[i]=max(nums[i]*Max[i-1],nums[i]*Min[i-1],nums[i])

Min[i]=min(nums[i]*Max[i-1],nums[i]*Min[i-1],nums[i])

代码如下:

class Solution {
public:
    int Max[20010],Min[20010];
    void init(vector<int>& nums){
        Max[0]=Min[0]=nums[0];
        for(int i=1;i<nums.size();i++){
            Max[i]=max(nums[i],max(nums[i]*Max[i-1],nums[i]*Min[i-1]));
            Min[i]=min(nums[i],min(nums[i]*Max[i-1],nums[i]*Min[i-1]));
        }
    }

    int maxProduct(vector<int>& nums) {
        init(nums);
        int max=Max[0];
        for(int i=1;i<nums.size();i++){
            if(Max[i]>max) max=Max[i];
        }
        return max;
    }
};

时间复杂度: O(n)

空间复杂度: O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值