西瓜学习内容

本文详细探讨了特征和属性的基本概念,区分了属性值和属性空间,介绍了监督学习(包括回归和分类)与无监督学习(如聚类)的区别。还涵盖了归纳和演绎的学习方法,以及模型评估中的误差、过拟合与欠拟合。重点讲解了模型选择与评估技巧,如留出法、交叉验证和自助法,以及查准率和查全率的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本术语:特征/属性

         属性值

         属性空间/样本空间/输入空间

         特征向量

      

        学习分为”监督学习”和”无监督学习”,前者回归和分类,后者聚类

假设空间:  方法: 归纳和演绎

 

模型评估与选择

误差

学习器的实际预测输出与样本的真实输出之间的差异称为"误差", 学习器在训练集上的误差称为"训练误差"  或"经验误"

过拟合和欠拟合

评估方法

留出法:2/3~4/5样本用于测试

交叉验证法:k值一般为10,数据大时比留一法合适

自助法:数据少时合适

查准率和查全率

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值