基本术语:特征/属性
属性值
属性空间/样本空间/输入空间
特征向量
学习分为”监督学习”和”无监督学习”,前者回归和分类,后者聚类
假设空间: 方法: 归纳和演绎
模型评估与选择
误差
学习器的实际预测输出与样本的真实输出之间的差异称为"误差", 学习器在训练集上的误差称为"训练误差" 或"经验误差"
过拟合和欠拟合
评估方法
留出法:2/3~4/5样本用于测试
交叉验证法:k值一般为10,数据大时比留一法合适
自助法:数据少时合适
查准率和查全率
基本术语:特征/属性
属性值
属性空间/样本空间/输入空间
特征向量
学习分为”监督学习”和”无监督学习”,前者回归和分类,后者聚类
假设空间: 方法: 归纳和演绎
模型评估与选择
误差
学习器的实际预测输出与样本的真实输出之间的差异称为"误差", 学习器在训练集上的误差称为"训练误差" 或"经验误差"
过拟合和欠拟合
评估方法
留出法:2/3~4/5样本用于测试
交叉验证法:k值一般为10,数据大时比留一法合适
自助法:数据少时合适
查准率和查全率