《深度学习原理与TensorFlow实践》学习笔记(四)

本文介绍了深度学习在图像风格化中的应用,重点探讨了CNN如何量化图像风格并进行风格化,包括内容损失和风格损失的定义。此外,还简单概述了生成对抗网络(GAN)的基本思想、框架和应用场景,并提供了相关资源链接。
摘要由CSDN通过智能技术生成

CNN应用之图像风格化实例

Image Style Transfer Using Convolutional Neural Networks (CVPRR16) [PDF]

如何量化风格
  • 图像风格化:运用深度学习的方法将普通图片与艺术作品进行融合,使普通照片具有名画的画风
  • 什么是画风呢?色彩?笔触?在CNN应用中则定义为可以捕捉的纹理
  • 纹理提取:
    • 通过反卷积重建(风格重建和内容重建),可以查看VGGNet不同层次提取的纹理特征。
    • 风格重建:浅层(a、b、c层)纹理较细密,深层图案更完整(风格信息保留,内容信息丢失)。
    • 内容重建:浅层(a、b、c层)更接近原图,深层像素细节信息丢失,但保留了内容信息。
      @VGG网络在风格和内容量化提取中的作用
      Markdown
  • 图像风格化目标:

    • 根据风格和内容的量化指标,合成图需要在内容维度上逼近照片,在风格维度上逼近绘画。
    • Gatys 等人利用预先训练好的 VGGNet 来提取图片中内容和风格的数值化特征,然后定义了一种特殊的损失函数来评估合成图片符合“风格”的程度,然后再使用 SGD 的方法不断修正合成图的各个像素以使损失值变小。
  • 代价函数定义:

    • 由内容损失和风格损失构成: Ltotal(p⃗ ,a⃗ ,x⃗ )=αLcontent(p⃗ ,x⃗ )+βLstyle(a⃗ ,x⃗ )
    • 内容损失:VGG19 中 relu4_2 层输出的特征图中每个元素的差的平方和
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值