CNN应用之图像风格化实例
Image Style Transfer Using Convolutional Neural Networks (CVPRR16) [PDF]
如何量化风格
- 图像风格化:运用深度学习的方法将普通图片与艺术作品进行融合,使普通照片具有名画的画风
- 什么是画风呢?色彩?笔触?在CNN应用中则定义为可以捕捉的纹理
- 纹理提取:
- 通过
反卷积
重建(风格重建和内容重建),可以查看VGGNet不同层次提取的纹理特征。 - 风格重建:浅层(a、b、c层)纹理较细密,深层图案更完整(风格信息保留,内容信息丢失)。
- 内容重建:浅层(a、b、c层)更接近原图,深层像素细节信息丢失,但保留了内容信息。
@VGG网络在风格和内容量化提取中的作用
- 通过
图像风格化目标:
- 根据风格和内容的量化指标,合成图需要在内容维度上逼近照片,在风格维度上逼近绘画。
- Gatys 等人利用预先训练好的 VGGNet 来提取图片中内容和风格的数值化特征,然后定义了一种特殊的损失函数来评估合成图片符合“风格”的程度,然后再使用 SGD 的方法不断修正合成图的各个像素以使损失值变小。
代价函数定义:
- 由内容损失和风格损失构成: Ltotal(p⃗ ,a⃗ ,x⃗ )=αLcontent(p⃗ ,x⃗ )+βLstyle(a⃗ ,x⃗ )
- 内容损失:VGG19 中 relu4_2 层输出的特征图中每个元素的差的平方和