[EMNLP2015]Effective Approaches to Attention-based Neural Machine Translation

本文探讨了神经机器翻译的优点,如长序列生成能力及低内存需求,并介绍两种Attention模型:全局注意力(global attention)和局部注意力(local attention),还讨论了input-feeding方法,通过实例解释了如何将上下文向量融入解码过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

neural machine translation有以下优点:
(1) 有能力生成很长的词序列
(2) 因为不需要存储巨大的短语词表,所以需要很小的内存
(3) 解码很容易
A: 介绍了两种attention模型,其共同点是在每一步decoding时hidden state h t 都作为输入参与计算c t
(1)global attention
在生成target word y t 时, input 中的所有词都参与其中
这里写图片描述
上图给出了两条计算路线, 上面一条是以往的计算路线,下面的是本文给出的计算路线
(2) local attention
input 中的部分词参与生成 y t
重点是计算p t , 文章写的很详细,这里不赘述

B:input-feeding Approach
图1和图4中蓝色方框是encoder, 红色部分是decoder, 现在关注的是decoder的输入有变化, 在图1中,decoder的当前时刻的input 是前一时刻的输出,而在图4中decoder的当前时刻input除了前一时刻的输出还有前一时刻的隐状态 h̃ t

这里写图片描述

这里写图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值