中国矿业大学-Chi Yu's Blog

Email:appleyuchi@foxmail.com

排序:
默认
按更新时间
按访问量
RSS订阅

contingency(列联表)python计算与实验结果分析

代码如下 import numpy as np from scipy.stats import chi2_contingency d = np.array([[37, 49, 23], [150, 100, 57]]) print chi2_contingency(d) 运行结果如下: (7....

2018-11-29 20:16:48

阅读数 170

评论数 0

python卡方分布计算

根据p-value计算分位点 import scipy.stats print scipy.stats.chi2.ppf(0.05, 5) 根据分位点计算p-value from scipy import stats print 1 - stats.chi2.cdf(critical_value...

2018-11-28 20:48:12

阅读数 98

评论数 0

The proof of “chi-square statistics follows chi-square distribution”

The target is to prove: ∑i=1i=r∑j=1j=s[Xij−Ni⋅(Njn)]2Ni⋅(Njn)∼χ2[(r−1)(s−1)]①\sum_{i=1}^{i=r} \sum_{j=1}^{j=s}\frac{[X_{ij}-N_i·(\frac{N_j}{n})]^2}{N...

2018-11-27 15:44:49

阅读数 100

评论数 0

详细解释到底啥是共轭先验(用本科知识来解释)

我们直奔主题。 根据百度百科上的解释: 如果后验分布与先验分布属于同类(分布簇),则先验分布与后验分布被称为共轭分布,而先验分布被称为似然函数的共轭先验。 上面这个定义有点复杂,我们待会儿再回过头来看这个定义 P(θ∣x)=P(x∣θ)⋅P(θ)∫P(x∣θ′)⋅P(θ′)dθ′P(\theta...

2018-11-16 19:50:37

阅读数 72

评论数 0

为什么“极大似然估计表达式的极值”可以用来估计参数

极大似然估计,通俗理解来说,就是在假定整体模型分布已知,利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值! 换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。 可能有小伙伴就要说了,还是有点抽象呀。我们这样想,一当模型满...

2018-10-02 20:48:10

阅读数 146

评论数 0

根据数据集获取概率密度图像和概率分布图像

matlab代码如下:number=10000 data=randn(number,1); [y,x]=hist(data,100); %分为100个区间统计,(你可以改你需要的区间数) % y=y/length(data)/mean(diff(x)); %计算概率密度 ,频...

2018-07-07 18:35:10

阅读数 412

评论数 0

到底什么是逆累积分布函数?

其实国内翻译很有问题,反函数里面的反,对应的英文单词是inverse逆累积分布函数里面的逆,对应的英文单词是inverse所以“逆累积分布函数”的意思其实是“反累积分布函数”作用:求分位点代码如下:mu = 0; sigma = 1; pd = makedist('Normal',mu,sigma...

2018-07-07 16:47:20

阅读数 1734

评论数 2

核密度估计Kernel Density Estimation(KDE)-代码详细解释

在介绍核密度评估Kernel Density Estimation(KDE)之前,先介绍下密度估计的问题。由给定样本集合求解随机变量的分布密度函数问题是概率统计学的基本问题之一。解决这一问题的方法包括参数估计和非参数估计。参数估计又可分为参数回归分析和参数判别分析。在参数回归分析中,人们假定数据分...

2018-07-06 21:48:53

阅读数 2335

评论数 0

先验概率与后验概率、贝叶斯区别与联系

本文假设大家都知道什么叫条件概率了(P(A|B)表示在B事件发生的情况下,A事件发生的概率)。先验概率和后验概率教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。堵车的概率就是先验概率 。那么如果我们出门之前...

2018-07-05 17:25:18

阅读数 658

评论数 2

数据挖掘关联分析中的支持度、置信度和提升度

购物篮分析购物篮数据的二元0/1表示利用关联分析的方法可以发现联系如关联规则或频繁项集。二元表示每一行对应一个事务,每列对应一个项,项用二元变量表示项在事务中出现比不出现更重要,因此项是非对称的的二元变量。项集(Itemset):包含0个或多个项的集合,如果包含k个项,则称为k-项集。事务的宽度:...

2018-07-01 14:54:01

阅读数 147

评论数 0

Ross《随机过程》(第二版)装填问题Python模拟实验

一、首先模拟Pn(n=6),代码如下:#=*- coding:utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') n=6 a = [-1] * (n-1) #定义一个长度为10的list print a # 10...

2018-06-16 16:19:13

阅读数 184

评论数 0

验证Ross《随机过程》(第二版)1.9C

针对4条射线,射线拥有的定点数分别为:5,6,4,7个点验证代码如下:# -*- coding: utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') # @Author: Chi Yu # @Date: 2018-0...

2018-06-15 16:00:57

阅读数 315

评论数 0

泊松分布的来源—公式推导—应用

转载请注明:http://blog.csdn.net/ningyaliuhebei/article/details/46409215一。泊松分布由二项分布引出(二者都是离散型随机变量)首先必须由二项分布引出:如果做一件事情成功的概率是 p 的话,那么独立尝试做这件事情 n 次,成功次数的分布就符合...

2018-05-29 13:27:19

阅读数 546

评论数 0

matlab验证Ross随机过程(第二版)P19页的结果

Ross书上的式子为:下面用Matlab验证最终结果ΣPi,n取n=2000进行验证,运行时间大概是两三分钟。代码主要思路是:先处理2<i<n-1的情况,代码中分别用一个for循环计算Σ,然后在[3,n-2]范围内求和,最后再加上i=1,n时的值1/e+...

2018-05-25 22:56:21

阅读数 81

评论数 0

20%截尾均值计算

How to Find a Trimmed MeanExample: Find the trimmed 20% mean for the following test scores: 60, 81, 83, 91, 99.Step 1: Trim the top and bottom 20% fr...

2018-04-16 21:26:26

阅读数 861

评论数 0

强大数定律与弱大数定律的图示详解

代码来自:https://stats.stackexchange.com/questions/2230/convergence-in-probability-vs-almost-sure-convergence?noredirect=1&lq=1该链接中,下面是强大数定律的...

2018-04-16 12:59:41

阅读数 1749

评论数 1

《概率论与数理统计习题全解指南》中的“计算机得”

对于t分布而言,有:下面演示如何计算出书中提到的0.0271http://www.osgeo.cn/app/sb137------------------------------------------------------------------------------------------...

2018-04-05 22:23:33

阅读数 136

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭