基于神经网络模型的文本语义通顺度计算研究-全文复现(还没弄完)

该硕士学位论文分为两个部分:
①基于依存句法分析的语义通顺度计算方法
②基于神经网络模型的语义通顺度计算方法

本篇记录摘抄了该论文的核心内容以及实验复现的详细步骤.

在N-gram模型下进行智能批改场景下的语义通顺度计算,第一种评价指标是通过划分语义通顺度等级,然后计算作答中的N元组,得出与标答的相似度,并给整个句子打分。

S c o r e = ∑ C o u n t ( N − g r a m ) − c ( 式 3.3 ) Score=\sum Count(N-gram)-c(式3.3) Score=Count(Ngram)c(3.3)
其中Count为N元组在标答中出现的次数,
c为作答句子的长度值,得分越高说明该句子在语义上更加通顺。



第二种评价指标是计算通顺度。假设句子W含有n个词语,计算其N-gram概
率,然后对概率值取几何平均数,即为该句子的通顺度。其计算方式如公式3.4所
示。
P s m o o c = P g + P main ⁡ − g + P n + P main ⁡ − n 4 ( 式 3.4 ) P_{\mathrm{smooc}}=\frac{P_{g}+P_{\operatorname{main}-g}+P_{n}+P_{\operatorname{main}-n}}{4}(式3.4) Psmooc=4Pg+Pmaing+Pn+Pmainn(3.4)
从上式可以看出P(w)的值与句子的长度n无关,因此判断任意长度句子的通顺度,且通顺度越大,句子越合理。



主流的依存分析方法:

分析方法特点
状态转移法根据每一步的训练来搜索局部最优解,直到整个句子训练完毕,可以根据中间得到的局部最优解对后续的训练过程进行分析
图方法具有全局性,利用最大生成树算法,直接训练得到整个句子的依存关系,但是不会产生局部最优解,无法利用局部最优解对后续过程进行分析

这个论文的作者不知道post-Tags是指代词性标注。
所以很多下标都写成了past
下面已经纠正过来。

变量含义
C p o s C_{pos} Cpos语料进行词性标注后的结果
C g C_g Cg
C g − p o s t C_{g-post} Cgpost C g C_g Cg词性标注后的结果

依存句法分析下的通顺度计算公式如下:
P c = c o u n t g c o u n t T ( 式 3.5 ) P_c=\frac{count_g}{count_T}(式3.5) Pc=countTcountg(3.5)
C o u n t R Count_R CountR:语义正确匹配的词语对个数
C o u n t T Count_T CountT:词语对总数

3.2开始的章节内容如下:

章节标题
3.2.1依存句法分析与通顺度
3.2.2句子主干的依存句法分析
3.2.3句子细节的依存句法分析
3.2.4语法通顺度计算
3.2.5语义通顺度计算
3.2.6基于依存句法分析的通顺度计算

需要注意:
"句子"和"句子主干"不是一个意思
"语法"和"语义"不是一个意思

下面我们来尝试复现论文中的语义依存图:
在这里插入图片描述
通过[1],我们得到
在这里插入图片描述
可以看到新版本的LTP与老版本的LTP结果略有区别

2句子主干的依存句法分析
依存句法分析下的通顺度计算,首先对句子的主干作评判,提取句子主干的步骤:
第一步,找出句子中的关键词;
第二步,在与关键词相关的集合中找出有主谓关系
及并列关系的词,这些词与关键词的集合就是整个句子的主语;
第三步,找出与整个句子的主语成定中关系的词,共同构成主语;
第四步,找出与句子主语中的谓语有动宾关系的词,最终按照语法结构连接起来就构成了句子的主干。

P s m o o c = P g + P main ⁡ − g + P n + P main ⁡ − n 4 ( 式 3.9 ) P_{\mathrm{smooc}}=\frac{P_{g}+P_{\operatorname{main}-g}+P_{n}+P_{\operatorname{main}-n}}{4}(式3.9) Psmooc=4Pg+Pmaing+Pn+Pmainn(3.9)

参数含义
P g P_g Pg整个句子的语法通顺度
P m a i n − g P_{main-g} Pmaing句子主干的语法通顺度
P n P_n Pn整个句子的语义通顺度
P m a i n − n P_{main-n} Pmainn句子主干的语义通顺度

Reference:
[1]哈工大-语言技术平台

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值