数据倾斜如何处理场景

倾斜问题的处理策略

场景1: join关联key为空/异常导致的倾斜

采样方法

  • 百分比采样
  • 随机采样
  • 重分区后进行limit采样

处理思路

  • 对于关联key为空的情况,可将其映射为一个随机值,然后与另一个表的key进行匹配
  • 对于热点数据,可以使用case when语句进行处理
  • 也可以使用union all合并结果

场景2: group by倾斜

处理思路

  • 可以使用局部聚合伪combiner或从粒度出发的方法进行处理
  • 可以通过设置一些参数来实现负载均衡,如设置hive.map.aggr参数或hive.groupby.mapaggr.checkinterval参数来控制map聚合行数的阈值

场景3: count distinct倾斜

处理思路

  • 可以通过过滤结果中的空值并加1来处理count distinct倾斜的问题
  • 如果包括group by操作,可以单独处理记录为空的情况,最后用union all将结果合并

场景4: join大表join小表

处理思路

  • 可能是由于key分布不均匀导致的倾斜问题,可以考虑使用map join自动开启,或者广播join来优化性能
  • 可以通过调整一些参数来控制map join的开启条件,如设置hive.auto.convert.join参数、hive.mapjoin.smalltable.filesize参数和hive.mapjoin.cache.numrows参数

场景5: join大表join大表

处理思路

  • 可以通过行列裁剪和分区表谓词下推来缩小表的规模,从而优化性能

场景6: map数量太少

处理思路

  • 可以通过控制每个map读取的大小来增加map的数量,从而提高并行度
  • 可以设置一些参数来调整map的读取方式,如mapreduce.input.fileinputformat.split.maxsize和mapreduce.input.fileinputformat.split.minsize.per.node参数,mapred.max.split.size也可以

场景7: map上游小文件过多

处理思路

  • 可以开启map小文件合并功能,将小文件合并成更大的文件
  • 可以设置一些参数来优化合并策略,如hive.merge.size.per.task参数、hive.exec.orc.default.block.size参数和hive.exec.orc.default.stripe.size参数

场景8: mergefile之后小文件过多

处理思路

  • 可以开启写stage的小文件合并功能,将合并之后的小文件再次合并成更大的文件
  • 可以设置一些参数来优化合并策略,如hive.merge.smallfiles.avgsize参数、hive.merge.mapfiles参数和hive.merge.mapredfiles参数

场景9: hive数据倾斜专用的参数

处理思路

  • 可以使用一些特定的参数来处理倾斜问题,如设置hive.optimize.skewjoin参数、hive.skewjoin.key参数和hive.optimize.skewjoin.compiletime参数
  • 这些参数不推荐使用,因为如果配置不正确可能会导致性能变慢

场景10: reduce弱

处理思路

  • 针对一些倾斜情况不严重的情况,可以通过调整reduce的内存和个数来提高并行度
  • 可以设置一些参数来控制reduce的内存和个数,如hive.exec.reducers.bytes.per.reducer、hive.exec.reducers.max和mapreduce.job.reduces等

场景11: map弱

处理思路

  • 可以通过调整map的内存和核心数来提高并行度和性能
  • 可以设置一些参数来控制map的内存和核心数,如mapreduce.map.memory.mb、mapreduce.map.cpu.vcores和mapreduce.map.java.opts等

场景12: hive并行不够

处理思路

  • 对于Hive作业,并行度不够的情况,可以通过调整一些参数来增加并行度
  • 可以设置一些参数来调整并行度,如hive.exec.parallel、hive.exec.parallel.thread.number等

场景13: Spark作业专用

处理思路

  • 针对Spark作业,并行度不够的情况,可以通过调整一些参数来增加并行度
  • 可以设置一些参数来调整并行度,如spark.dynamicAllocation.enabled、spark.yarn.driver.memory、spark.executor.memory、spark.executor.instances和spark.executor.cores等
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Spark中,数据倾斜(Data Skew)是指在数据处理过程中,某些数据分区的数据量过大,导致这些分区的数据处理速度远慢于其他分区,从而影响整个作业的性能和稳定性。数据倾斜问题在实际应用中比较常见,需要采取一些措施来解决。以下是一些解决数据倾斜问题的方法: 1. 均衡数据分区。我们可以通过重新划分分区的方式来均衡数据分布,从而减少数据倾斜的发生。例如,可以使用repartition()方法对RDD或DataFrame进行重新分区,或者使用coalesce()方法将多个小分区合并成一个大分区。 2. 使用随机前缀法(Random Prefix)等技术。随机前缀法是一种比较常用的解决数据倾斜问题的技术,其主要思想是在数据处理之前给每个键值对添加一个随机前缀,从而使数据均匀地分布在不同的分区中。Spark的groupByKey()方法和reduceByKey()方法都提供了参数来支持随机前缀法。 3. 使用聚合操作。聚合操作(例如countByKey()、reduceByKey()等)可以将相同的键值对合并在一起,从而减少数据倾斜的发生。在进行聚合操作时,可以使用combineByKey()方法来控制每个分区的聚合方式。 4. 使用广播变量。如果某些变量在整个Job过程中都需要使用,可以使用广播变量将其缓存起来,从而避免数据倾斜。广播变量可以将变量复制到每个节点上,从而减少数据倾斜的发生。 5. 使用第三方库。除了Spark自带的解决数据倾斜的方法之外,还可以使用一些第三方库来解决数据倾斜问题。例如,可以使用Alibaba的DataX、eBay的Kylin等库来解决数据倾斜问题。 通过以上几种方法,可以有效地解决Spark中的数据倾斜问题,提高作业的性能和稳定性。在实际应用中,需要根据具体的场景和数据分布情况选择合适的方法来解决数据倾斜问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值