信号与系统ch3[连续信号的频域分析]

§ 3 \S3 §3 连续信号的频域分析

问题引入:已知 L T I LTI LTI 系统的一组输入输出 x ( t ) x(t) x(t) y ( t ) y(t) y(t) ,如何求解 L T I LTI LTI 系统的冲激响应 h ( t ) h(t) h(t)

3.1 傅里叶级数

3.1.1 傅里叶级数 & 欧拉-傅里叶公式:
  • 正余弦表达形式

f ( x ) = A 0 + ∑ k = 1 + ∞ A k c o s ( k w 0 x ) + ∑ k = 1 + ∞ B k s i n ( k w 0 x ) f(x)=A_0+\sum^{+\infty}_{k=1}A_kcos(kw_0x)+\sum^{+\infty}_{k=1}B_ksin(kw_0x) f(x)=A0+k=1+Akcos(kw0x)+k=1+Bksin(kw0x)

A 0 = 1 T 0 ∫ 0 T 0 f ( x ) d x A k = 2 T 0 ∫ 0 T 0 f ( x ) c o s ( k w 0 x ) d x ,   k ∈ Z + B k = 2 T 0 ∫ 0 T 0 f ( x ) s i n ( k w 0 x ) d x ,   k ∈ Z + A_0=\frac1{T_0}\int^{T_0}_0f(x)dx\\ A_k=\frac2{T_0}\int^{T_0}_0f(x)cos(kw_0x)dx,\ k\in Z^+\\ B_k=\frac2{T_0}\int^{T_0}_0f(x)sin(kw_0x)dx,\ k \in Z^+ A0=T010T0f(x)dxAk=T020T0f(x)cos(kw0x)dx, kZ+Bk=T020T0f(x)sin(kw0x)dx, kZ+

  • 复数表达形式

x ( t ) = ∑ k = − ∞ + ∞ a k e i k w 0 t a k = 1 T 0 ∫ 0 T 0 x ( t ) e − i k w 0 t d t x(t)=\sum^{+\infty}_{k=-\infty}a_ke^{ikw_0t}\\ a_k=\frac1{T_0}\int^{T_0}_0x(t)e^{-ikw_0t}dt x(t)=k=+akeikw0tak=T010T0x(t)eikw0tdt

​ 其中 a k a_k ak 是洛朗级数, k ∈ Z k \in Z kZ
{ A k = a k + a − k B k = i ( a k − a − k ) \left\{ \begin{array}{lr} A_k=a_k+a_{-k}\\ B_k=i(a_k-a^{-k}) \end{array} \right. {Ak=ak+akBk=i(akak)

3.1.2 信号存在傅里叶变换的充要条件

狄利克雷条件:

  1. 一个周期内绝对可积 ;
  2. 一个周期内最值有限;
  3. 一个周期内有有限个第一类间断点

3.2 傅里叶变换

3.2.0 S a ( t ) Sa(t) Sa(t) 函数的性质

S a ( t ) = { 1 t = 0 s i n t t t ≠ 0 Sa(t)= \left\{ \begin{array}{lr} 1 & t=0\\ \frac{sint}t & t\not=0 \end{array} \right. Sa(t)={1tsintt=0t=0

  • 是偶函数

  • 狄利克雷积分:
    ∫ 0 + ∞ s i n t t d t = ∫ − ∞ 0 s i n t t d t = π 2 ∫ − ∞ + ∞ s i n t t d t = π \int_{0}^{+\infty}\frac{sint}tdt=\int^{0}_{-\infty}\frac{sint}tdt=\frac{\pi}2\\ \int_{-\infty}^{+\infty}\frac{sint}tdt=\pi 0+tsintdt=0tsintdt=2π+tsintdt=π

  • 取极限:
    lim ⁡ w → + ∞ w S a ( w t ) = π δ ( t ) \lim_{w\to+\infty}wSa(wt)=\pi\delta(t) w+limwSa(wt)=πδ(t)

3.2.1 傅里叶变换
  • 傅里叶级数向非周期函数的推广。
  1. 定义 F ( w ) = X ( i w ) = ∫ T 0 x ( t ) e − i w t d t F(w)=X(iw)=\int_{T_0}x(t)e^{-iwt}dt F(w)=X(iw)=T0x(t)eiwtdt ,则有 a k = 1 T 0 X ( i k w 0 ) a_k=\frac1{T_0}X(ikw_0) ak=T01X(ikw0) x ( t ) = 1 2 π ∑ k = − ∞ + ∞ X ( i k w 0 ) e i k w 0 t w 0 x(t)=\frac1{2\pi}\sum_{k=-\infty}^{+\infty}X(ikw_0)e^{ikw_0t}w_0 x(t)=2π1k=+X(ikw0)eikw0tw0

  2. T 0 T_0 T0 趋于无穷大,此时:
    X ( i w ) = ∫ − ∞ + ∞ x ( t ) e − i w t d t X(iw)=\int^{+\infty}_{-\infty}x(t)e^{-iwt}dt X(iw)=+x(t)eiwtdt

    x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( i w ) e i w t d w x(t)=\frac1{2\pi}\int_{-\infty}^{+\infty}X(iw)e^{iwt}dw x(t)=2π1+X(iw)eiwtdw

    即傅里叶正变换和傅里叶逆变换。

  • 6 6 6 种典型信号的傅里叶变换:

    1. e − α t u ( t ) →   F   1 α + i w ( α > 0 ) e − α ∣ t ∣ →   F   2 α α 2 + w 2 ( α > 0 ) e^{-\alpha t}u(t)\xrightarrow{\ F\ } \frac1{\alpha+iw} ( \alpha>0 )\\ e^{-\alpha|t|}\xrightarrow{\ F\ }\frac{2\alpha}{\alpha^2+w^2}(\alpha>0) eαtu(t) F  α+iw1(α>0)eαt F  α2+w22α(α>0)

    2. δ ( t ) →   F   1 \delta(t)\xrightarrow{\ F\ }1\\ δ(t) F  1

    3. 1 →   F   2 π δ ( w ) 1\xrightarrow{\ F\ }2\pi \delta(w)\\ 1 F  2πδ(w)

    4. { β ( u ( t + τ 2 ) − u ( t − τ 2 ) ) →   F   β τ S a ( τ w 2 ) = 2 β s i n ( τ w 2 ) w w 0 π S a ( w 0 t ) = s i n ( w 0 t ) π t →   F   u ( w + w 0 ) − u ( w − w 0 ) \left\{ \begin{array}{lr} \beta(u(t+\frac\tau2)-u(t-\frac\tau2))\xrightarrow{\ F\ } \beta\tau Sa(\frac{\tau w}2)=\frac{2\beta sin(\frac{\tau w}2)}w\\ \frac{w_0}\pi Sa(w_0t)=\frac{sin(w_0t)}{\pi t}\xrightarrow{\ F\ }u(w+w_0)-u(w-w_0) \end{array} \right. {β(u(t+2τ)u(t2τ)) F  βτSa(2τw)=w2βsin(2τw)πw0Sa(w0t)=πtsin(w0t) F  u(w+w0)u(ww0)

      方波和 S a ( ∗ ) Sa(*) Sa() 互为傅里叶变换。

      从方波向 S a ( w ) Sa(w) Sa(w) 变换, S a ( w ) Sa(w) Sa(w) 的系数是方波的面积。

    5. u ( t ) →   F   1 i w + π δ ( w ) u(t)\xrightarrow{\ F\ } \frac1{iw}+\pi\delta(w) u(t) F  iw1+πδ(w)

    6. { c o s ( w 0 t ) →   F   π [ δ ( w + w 0 ) + δ ( w − w 0 ) ] s i n ( w 0 t ) →   F   i π [ δ ( w + w 0 ) − δ ( w − w 0 ) ] \left \{ \begin{array}{lr} cos(w_0 t)\xrightarrow{\ F\ } \pi[\delta(w+w_0)+\delta(w-w_0)]\\ sin(w_0 t)\xrightarrow{\ F\ }i\pi[\delta(w+w_0)-\delta(w-w_0)] \end{array} \right. {cos(w0t) F  π[δ(w+w0)+δ(ww0)]sin(w0t) F  [δ(w+w0)δ(ww0)]

3.3 傅里叶变换的性质

3.3.1 线性,时移,频移,微分,卷积,调制
  1. 线性性

  2. 时移性质:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ } F(w) x(t) F  F(w) ,则 x ( t − t 0 ) →   F   F ( w ) e − i w t 0 x(t-t_0)\xrightarrow{\ F\ }F(w)e^{-iwt_0} x(tt0) F  F(w)eiwt0

  3. 频移性质:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则 x ( t ) ⋅ e i w 0 t →   F   F ( w − w 0 ) x(t)\cdot e^{iw_0t}\xrightarrow{\ F\ }F(w-w_0) x(t)eiw0t F  F(ww0)

    拓展:
    x ( t ) c o s ( w 0 t ) →   F   1 2 [ F ( w + w 0 ) + F ( w − w 0 ) ] x ( t ) s i n ( w 0 t ) →   F   i 2 [ F ( w + w 0 ) − F ( w − w 0 ) ] x(t)cos(w_0t)\xrightarrow{\ F\ }\frac12[F(w+w_0)+F(w-w_0)]\\ x(t)sin(w_0t)\xrightarrow{\ F\ }\frac i2[F(w+w_0)-F(w-w_0)] x(t)cos(w0t) F  21[F(w+w0)+F(ww0)]x(t)sin(w0t) F  2i[F(w+w0)F(ww0)]

  4. 微分性质:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则 d n x ( t ) d t n →   F   ( i w ) n F ( w ) \frac{d^nx(t)}{dt^n} \xrightarrow{\ F\ }(iw)^nF(w) dtndnx(t) F  (iw)nF(w)

    拓展:频域微分

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则 t x ( t ) →   F   i d F ( w ) d w tx(t)\xrightarrow{\ F\ }i\frac{dF(w)}{dw} tx(t) F  idwdF(w)

    例如: t e − α t u ( t ) →   F   1 ( α + i w ) 2 te^{-\alpha t}u(t)\xrightarrow{\ F\ }\frac1{(\alpha+iw)^2} teαtu(t) F  (α+iw)21

  5. 时域卷积性质:

    x 1 ( t ) →   F   F 1 ( w ) x_1(t)\xrightarrow{\ F\ }F_1(w) x1(t) F  F1(w) x 2 ( t ) →   F   F 2 ( w ) x_2(t)\xrightarrow{\ F\ }F_2(w) x2(t) F  F2(w) ,则有:
    x 1 ( t ) ∗ x 2 ( t ) →   F   F 1 ( w ) ⋅ F 2 ( w ) x_1(t)*x2(t)\xrightarrow{\ F\ }F_1(w)\cdot F_2(w) x1(t)x2(t) F  F1(w)F2(w)
    概括为——时域卷积等于频域相乘。

  6. 积分性质:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则:
    ∫ − ∞ t x ( τ ) d τ = x ( t ) ∗ u ( t ) →   F   F ( w ) [ 1 i w + π δ ( w ) ] \int_{-\infty}^{t}x(\tau)d\tau=x(t)*u(t)\xrightarrow{\ F\ }F(w)[\frac1{iw}+\pi\delta(w)] tx(τ)dτ=x(t)u(t) F  F(w)[iw1+πδ(w)]

  7. 频域卷积性质(调制性质):

    x 1 ( t ) →   F   F 1 ( w ) x_1(t)\xrightarrow{\ F\ }F_1(w) x1(t) F  F1(w) x 2 ( t ) →   F   F 2 ( w ) x_2(t)\xrightarrow{\ F\ }F_2(w) x2(t) F  F2(w) ,则有:
    x 1 ( t ) ⋅ x 2 ( t ) →   F   1 2 π F 1 ( w ) ∗ F 2 ( w ) x_1(t)\cdot x_2(t)\xrightarrow{\ F\ }\frac1{2\pi}F_1(w)*F_2(w) x1(t)x2(t) F  2π1F1(w)F2(w)
    概括为——时域相乘等于 1 2 π \frac1{2\pi} 2π1 频域卷积。

3.3.2 应用:信号的调制与解调
  • 信号的调制:
    y ( t ) = ∑ i = 1 N x i ( t ) c o s ( w c i t ) y(t)=\sum^{N}_{i=1}x_i(t)cos(w_{c_i}t) y(t)=i=1Nxi(t)cos(wcit)
    其中 x ( i ) x(i) x(i) 是角频率在 ( − w 0 , w 0 ) (-w_0, w_0) (w0,w0) 的带限信号。

  • 信号的解调:
    x i ( t ) = [ y ( t ) c o s ( w c i t ) ] ∗ 2 s i n ( w p t ) π t ,   i ∈ [ 1 , n ] x_i(t)=[y(t)cos(w_{c_i}t)]*\frac{2sin(w_pt)}{\pi t},\ i \in [1,n] xi(t)=[y(t)cos(wcit)]πt2sin(wpt), i[1,n]
    信号时域乘以载波,相当于频域卷积两个冲激函数;

    之后卷积低通滤波器,相当于频域乘以门函数,达到筛选频率的效果。

  • 限制条件:
    { w 0 < w p < ∣ w c i − w c j ∣ − w 0 w 0 < ∣ w c i − w c j ∣ 2 \left \{ \begin{array}{lr} w_0<w_p<|w_{c_i}-w_{c_j}|-w_0\\ w_0<\frac{|w_{c_i}-w_{c_j}|}2 \end{array} \right. {w0<wp<wciwcjw0w0<2wciwcj

3.3.3 尺度变换,共轭对称,对偶,帕斯瓦尔定理
  1. 时间与频率的尺度变换:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则: x ( a t ) →   F   1 ∣ a ∣ F ( w / a ) x(at)\xrightarrow{\ F\ } \frac1{|a|}F(w/a) x(at) F  a1F(w/a)

    时域与频域的伸缩变换刚好相反。

  2. 对偶性:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则: F ( t ) →   F   2 π x ( − w ) F(t)\xrightarrow{\ F\ }2\pi x(-w) F(t) F  2πx(w)

    例:希尔伯特变换 1 π t →   F   2 i [ u ( − w ) − 1 2 ] = i ⋅ s g n ( − w ) \frac1{\pi t}\xrightarrow{\ F\ }2i[u(-w)-\frac12]=i\cdot sgn(-w) πt1 F  2i[u(w)21]=isgn(w)

    第一步:
    { u ( t ) →   F   1 i w + π δ ( w ) 1 2 →   F   π δ ( w ) ⇒   u ( t ) − 1 2 →   F   − 1 i w i π [ u ( t ) − 1 2 ] →   F   1 π w \left\{ \begin{array}{lr} u(t)\xrightarrow{\ F\ }\frac1{iw}+\pi\delta(w)\\ \frac12\xrightarrow{\ F\ }\pi\delta(w) \end{array} \right. \Rightarrow\ u(t)-\frac12\xrightarrow{\ F\ }-\frac1{iw} \\ \frac i\pi[u(t)-\frac12]\xrightarrow{\ F\ }\frac1{\pi w} {u(t) F  iw1+πδ(w)21 F  πδ(w) u(t)21 F  iw1πi[u(t)21] F  πw1
    第二步,利用对偶性质:
    1 π t →   F   2 i [ u ( − w ) − 1 2 ] \frac1{\pi t}\xrightarrow{\ F\ }2i[u(-w)-\frac12] πt1 F  2i[u(w)21]

  3. 帕斯瓦尔定理:

    x ( t ) →   F   F ( w ) x(t)\xrightarrow{\ F\ }F(w) x(t) F  F(w) ,则:
    ∫ − ∞ + ∞ ∣ x ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( w ) ∣ 2 d w \int_{-\infty}^{+\infty}|x(t)|^2dt=\frac1{2\pi}\int_{-\infty}^{+\infty}|F(w)|^2dw +x(t)2dt=2π1+F(w)2dw
    傅里叶变换能量守恒。

  4. 共轭 & 共轭对称:

    (1) 实偶对实偶,实奇对虚奇;

    (2) 实函数 x ( t ) x(t) x(t) 对应的傅里叶变换 X ( j w ) X(jw) X(jw) 实部偶函数,虚部奇函数;

    (3) 实函数 x ( t ) x(t) x(t) 对应的傅里叶变换 X ( j w ) X(jw) X(jw) 幅频特性偶函数,相频特性奇函数。

    虚输入信号只有理论意义,可以拆解成实部和虚部两个实函数。

3.3.4 周期信号的傅里叶变换
  • 联系 周期函数 傅里叶变换和傅里叶级数的公式:
    a k = 1 T X ( j k w 0 ) a_k=\frac 1TX(jkw_0) ak=T1X(jkw0)

    其中 X ( j w ) X(jw) X(jw) x ( t ) x(t) x(t) 一个周期的傅里叶变换。

  • 周期信号的傅里叶变换:
    F ( w ) = 2 π ∑ k = − ∞ + ∞ a k δ ( w − k w 0 ) F(w)=2\pi\sum^{+\infty}_{k=-\infty}a_k\delta(w-kw_0) F(w)=2πk=+akδ(wkw0)
    e g . eg. eg. 周期冲激串:傅里叶变换后还是冲激串。
    δ T ( t ) = ∑ k = − ∞ + ∞ δ ( t − k T ) ↓ F X ( j w ) = 1 T ∑ k = − ∞ + ∞ δ ( w − k w 0 ) \delta_T(t)=\sum_{k=-\infty}^{+\infty}\delta(t-kT)\\ \downarrow{F}\\X(jw)=\frac1T\sum_{k=-\infty}^{+\infty}\delta(w-kw_0) δT(t)=k=+δ(tkT)FX(jw)=T1k=+δ(wkw0)

3.4 理想低通滤波器

3.4.1定义

x ( t ) x(t) x(t) 对应的傅里叶变换 X ( j w ) X(jw) X(jw) 在频域上表现为单脉冲方波,即为理想低通滤波器。

冲激响应: h ( t ) = s i n ( w c t ) π t h(t)=\frac{sin(w_ct)}{\pi t} h(t)=πtsin(wct)

3.4.2 缺点:
  1. 非因果系统,因此做不出 实时 系统;
  2. 振铃效应:理想的低通滤波器会把陡峭的上升信号,转化成逐渐衰减的波纹传递至无穷远。(增加主瓣面积,可以减弱振铃效应,基于理想低通滤波器设计的其他滤波器就基于这一原理)
3.4.3 理想低通滤波器的阶跃响应

S i ( t ) = ∫ 0 x s i n τ τ d τ Si(t)=\int^x_0\frac{sin\tau}\tau d\tau Si(t)=0xτsinτdτ

则响应 y ( t ) = ∫ − ∞ t s i n ( w c t ) π τ d τ = 1 2 + 1 π S i ( w c t ) y(t)=\int^t_{-\infty}\frac{sin(w_ct)}{\pi \tau}d\tau=\frac12+\frac1\pi Si(w_c t) y(t)=tπτsin(wct)dτ=21+π1Si(wct)

3.4.4 与其他理想滤波器的关系:

下面用 X ( j w ; w 1 ) X(jw;w_1) X(jw;w1) 表示带宽为 w 1 w_1 w1 的低通滤波器的频域函数。

  • 高通滤波器: 1 − X ( j w ; w 1 ) 1-X(jw;w_1) 1X(jw;w1)
  • 带通滤波器: X ( j w ; w 1 ) − X ( j w ; w 2 ) ,   w 1 > w 2 X(jw;w_1)-X(jw;w_2),\ w_1>w_2 X(jw;w1)X(jw;w2), w1>w2
  • 带阻滤波器: 1 − [ X ( j w ; w 1 ) − X ( j w ; w 2 ) ] ,   w 1 > w 2 1-[X(jw;w_1)-X(jw;w_2)],\ w_1>w_2 1[X(jw;w1)X(jw;w2)], w1>w2

*3.5 补充内容

3.5.1 二维信号的傅里叶变换

3.5.2 不常见的傅里叶变换
  1. 双边指数信号:

    x ( t ) = e − α ∣ t ∣ x(t)=e^{-\alpha|t|} x(t)=eαt ,对应频域上 X ( j w ) = 2 α α 2 + w 2 X(jw)=\frac{2\alpha}{\alpha^2+w^2} X(jw)=α2+w22α

  2. 高斯脉冲信号:

    x ( t ) = E e − ( t / τ ) 2 x(t)=Ee^{-(t/\tau)^2} x(t)=Ee(t/τ)2 ,对应频域上 X ( j w ) = π E τ b e − ( w τ 2 ) 2 X(jw)=\sqrt{\pi}E\tau be^{-(\frac{w\tau}2)^2} X(jw)=π Eτbe(2wτ)2

  3. 半波余弦信号:
    x ( t ) = { E c o s ( π t τ ) ∣ t ∣ < τ 2 0 ∣ t ∣ > τ 2 x(t)= \left \{ \begin{array}{lr} Ecos(\frac{\pi t}\tau) & |t|<\frac{\tau}{2}\\ 0 & |t|>\frac\tau2 \end{array} \right. x(t)={Ecos(τπt)0t<2τt>2τ

    对应频域上 X ( j w ) = 2 E τ π c o s ( w τ 2 ) 1 − ( w τ π ) 2 X(jw)=\frac{2E\tau}\pi\frac{cos(\frac{w\tau}2)}{1-(\frac{w\tau}\pi)^2} X(jw)=π2Eτ1(πwτ)2cos(2wτ)

  4. 奇对称斜线:

    x ( t ) = E T t ( − T < t < T ) x(t)=\frac ETt (-T<t<T) x(t)=TEt(T<t<T) ,对应频域上 X ( j w ) = j E T [ 2 s i n ( w T ) w 2 − 2 T w c o s ( w T ) ] X(jw)=j\frac ET[\frac{2sin(wT)}{w^2}-2\frac Twcos(wT)] X(jw)=jTE[w22sin(wT)2wTcos(wT)]

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值