信号与系统ch1&ch2[典型的系统&时域分析]

§ 1 \S1 §1 典型的系统

系统:输入信号 x ( t ) x(t) x(t) ,得到信号 y ( t ) y(t) y(t)

  1. 线性系统
  2. 时不变系统
  3. 因果系统
  4. 稳定系统
  5. 记忆系统
  6. 可逆系统

1.1 线性系统

性质:

  • 齐次性: ∀ x ( t ) → y ( t ) \forall x(t) \rightarrow y(t) x(t)y(t) ,则有 a x ( t ) → a y ( t ) ax(t) \rightarrow ay(t) ax(t)ay(t)

  • 叠加性: ∀ x 1 ( t ) → y 1 ( t ) \forall x_1(t) \rightarrow y_1(t) x1(t)y1(t) x 2 ( t ) → y 2 ( t ) x_2(t) \rightarrow y_2(t) x2(t)y2(t) ,则有 x 1 ( t ) + x 2 ( t ) → y 1 ( t ) + y 2 ( t ) x_1(t)+x_2(t) \rightarrow y_1(t)+y_2(t) x1(t)+x2(t)y1(t)+y2(t)

1.2 时不变系统

性质:

  • ∀ x ( t ) → y ( t ) \forall x(t) \rightarrow y(t) x(t)y(t) ,则有 ∀ t 0 ∈ R \forall t_0 \in R t0R x ( t − t 0 ) → y ( t − t 0 ) x(t-t_0) \rightarrow y(t-t_0) x(tt0)y(tt0)

判定:

  • t t t 只能作为 x ( t ) x(t) x(t) 的自变量存在。
  • 自变量中的 t t t 的系数必须是 1 1 1

1.3 因果系统

定义:

  • 如果一个系统任何时刻输出只去却与现在和过去的输入,就称该系统为因果系统。

判定:

  • 输入的自变量表达式,恒小于等于输出的自变量表达式。

1.4 无记忆系统

定义:

  • y ( t ) y(t) y(t) 的值仅仅只依赖于 x ( t ) x(t) x(t) 的值。

判定:

  • 输入的自变量表达式,恒等于输出的自变量表达式。

1.5 可逆系统

定义:

  • x ( t ) x(t) x(t) y ( t ) y(t) y(t) 是一一对应。

1.6 稳定系统

定义:

  • x ( t ) x(t) x(t) 有界,则 y ( t ) y(t) y(t) 也有界。
  1. y y y x x x 的连续函数,则系统是稳定的。
  2. 连续的积分器、微分器都是不稳定的;离散的累加器不稳定,但是差分器确是稳定的。

§ 2 \S 2 §2 L T I LTI LTI 系统的时域分析

L T I LTI LTI 系统,即线性时不变系统。

L T I LTI LTI 系统非常简单,只要知道一对对应的输入输出,就能知道所有输入对应的输出。

2.1 卷积公式

  • 离散信号:

若输入 L T I LTI LTI 的信号序列为单位脉冲序列 δ [ n ] \delta[n] δ[n] , 则称此时的响应 h [ n ] h[n] h[n] 为此 L T I LTI LTI 的单位脉冲响应。

任意输入序列 x [ n ] x[n] x[n] ,都有其零状态响应 y [ n ] = x [ n ] ∗ h [ n ] y[n]=x[n]*h[n] y[n]=x[n]h[n] ,其中 ∗ * 为卷积符号。
y [ n ] = ∑ k = − ∞ + ∞ x [ n ] ⋅ h [ n − k ] y[n]=\sum^{+\infty}_{k=-\infty} x[n]\cdot h[n-k] y[n]=k=+x[n]h[nk]

  • 连续信号:

若输入 L T I LTI LTI 的信号为单位冲激函数 δ ( t ) \delta(t) δ(t) ,则称此时的响应 h ( t ) h(t) h(t) 为此 L T I LTI LTI 的单位冲激响应。

任意输入信号 x ( t ) x(t) x(t) ,都有其零状态响应 y ( t ) = x ( t ) ∗ h ( t ) y(t)=x(t)*h(t) y(t)=x(t)h(t)
y ( t ) = ∫ − ∞ + ∞ x ( τ ) ⋅ h ( t − τ ) d τ y(t)=\int^{+\infty}_{-\infty} x(\tau)\cdot h(t-\tau) d \tau y(t)=+x(τ)h(tτ)dτ

2.2 单位冲激函数的性质

勒贝格对函数相等的定义: h 1 ( t ) = h 2 ( t ) h_1(t)=h_2(t) h1(t)=h2(t) ,当且仅当对于任意非奇异函数 y ( t ) y(t) y(t) ∫ − ∞ + ∞ y ( t ) h 1 ( t ) d t = ∫ − ∞ + ∞ y ( t ) h 2 ( t ) d t \int^{+\infty}_{-\infty} y(t)h_1(t)dt=\int^{+\infty}_{-\infty}y(t)h_2(t)dt +y(t)h1(t)dt=+y(t)h2(t)dt 均成立。

  1. 奇偶性:是偶函数

  2. 任何函数卷积 δ ( t ) \delta(t) δ(t) 都等于原函数

  3. 归一性: ∫ − ∞ + ∞ δ ( t ) d t = 1 \int^{+\infty}_{-\infty} \delta(t) dt=1 +δ(t)dt=1

  4. 筛选性: ∫ − ∞ + ∞ x ( t ) δ ( t ) d t = x ( 0 ) \int_{-\infty}^{+\infty} x(t)\delta(t)dt=x(0) +x(t)δ(t)dt=x(0) x ( t ) δ ( t − t 0 ) = x ( t 0 ) δ ( t − t 0 ) x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0) x(t)δ(tt0)=x(t0)δ(tt0)

  5. 伸缩性: δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\frac{1}{|a|} \delta(t) δ(at)=a1δ(t)

  6. 变换法则: δ ( f ( t ) ) = ∑ ∀ t 0   s . t .   f ( t 0 ) = 0 1 ∣ f ′ ( t 0 ) ∣ δ ( t − t 0 ) \delta(f(t))=\sum_{\forall t_0\ s.t. \ f(t_0)=0} \frac1{|f'(t_0)|}\delta(t-t_0) δ(f(t))=t0 s.t. f(t0)=0f(t0)1δ(tt0)

  7. 导数的性质:

    δ ′ ( t ) \delta'(t) δ(t) 的性质: ∫ − ∞ + ∞ x ( t ) δ ′ ( t ) d t = − x ′ ( 0 ) \int_{-\infty}^{+\infty}x(t)\delta'(t)dt=-x'(0) +x(t)δ(t)dt=x(0)

    δ ( n ) ( t ) \delta^{(n)}(t) δ(n)(t) 的性质: ∫ − ∞ + ∞ x ( t ) δ ( n ) ( t ) d t = ( − 1 ) n x ( n ) ( 0 ) \int_{-\infty}^{+\infty}x(t)\delta^{(n)}(t)dt=(-1)^nx^{(n)}(0) +x(t)δ(n)(t)dt=(1)nx(n)(0)

性质5 是 性质6 的特例。

推论:

  1. 由勒贝格函数相等的定义
    lim ⁡ ω → + ∞ s i n ( ω t ) π t = δ ( t ) lim ⁡ τ → 0 τ π ( t 2 + τ 2 ) = δ ( t ) \lim_{\omega \to +\infty}\frac{sin(\omega t)}{\pi t}=\delta(t)\\\lim_{\tau \to 0}\frac{\tau}{\pi(t^2+\tau^2)}=\delta(t) ω+limπtsin(ωt)=δ(t)τ0limπ(t2+τ2)τ=δ(t)

  2. 由变换法则
    δ ( s i n t ) = ∑ k = − ∞ + ∞ δ ( t − k π ) δ ( c o s t ) = ∑ k = − ∞ + ∞ δ ( t − k π − π 2 ) \delta(sint)=\sum_{k=-\infty}^{+\infty}\delta(t-k\pi)\\ \delta(cost)=\sum_{k=-\infty}^{+\infty} \delta(t-k\pi-\frac\pi 2)\\ δ(sint)=k=+δ(t)δ(cost)=k=+δ(t2π)

2.3 卷积的性质

  1. 交换律: x ( t ) ∗ h ( t ) = h ( t ) ∗ x ( t ) x(t)*h(t)=h(t)*x(t) x(t)h(t)=h(t)x(t)

  2. 结合律: [ x ( t ) ∗ g ( t ) ] ∗ h ( t ) = [ x ( t ) ∗ h ( t ) ] ∗ g ( t ) [x(t)*g(t)]*h(t)=[x(t)*h(t)]*g(t) [x(t)g(t)]h(t)=[x(t)h(t)]g(t)

  3. 分配律: x ( t ) ∗ [ h 1 ( t ) + h 2 ( t ) ] = x ( t ) ∗ h 1 ( t ) + x ( t ) ∗ h 2 ( t ) x(t)*[h_1(t)+h_2(t)]=x(t)*h_1(t)+x(t)*h_2(t) x(t)[h1(t)+h2(t)]=x(t)h1(t)+x(t)h2(t)

2.4第二章补充:

  1. x ( t ) ∗ u ( t ) = ∫ − ∞ t x ( τ ) d τ x(t)*u(t)=\int_{-\infty}^{t} x(\tau)d\tau x(t)u(t)=tx(τ)dτ ,积分器; x [ n ] ∗ u [ n ] = ∑ k = − ∞ n x [ k ] x[n]*u[n]=\sum_{k=-\infty}^{n}x[k] x[n]u[n]=k=nx[k] ,累加器。

  2. d [ x ( t ) ∗ h ( t ) ] d t = d x ( t ) d t ∗ h ( t ) = d h ( t ) d t ∗ x ( t ) \frac{d[x(t)*h(t)]}{dt}=\frac{dx(t)}{dt}*h(t)=\frac{dh(t)}{dt}*x(t) dtd[x(t)h(t)]=dtdx(t)h(t)=dtdh(t)x(t)

  3. x ( t − t 0 ) ∗ h ( t + t 0 ) = x ( t ) ∗ h ( t ) x(t-t_0)*h(t+t_0)=x(t)*h(t) x(tt0)h(t+t0)=x(t)h(t)

  4. L T I LTI LTI 系统稳定的充要条件是: ∫ − ∞ + ∞ ∣ h ( t ) ∣ d t \int^{+\infty}_{-\infty}|h(t)|dt +h(t)dt 有界

  5. L T I LTI LTI 系统是因果的充要条件是: h ( t ) = 0 ,   t < 0 h(t)=0,\ t<0 h(t)=0, t<0

微分方程的时域解法已经在微积分中初步了解了,在拉普拉斯变换(第六章)会继续详细探讨。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值