迁移学习在医学图像分类中的应用

文章探讨了迁移学习的概念和策略,如DCNN、多分类器融合等,并专注于医学图像分类。通过预训练模型参数、特征提取和特征映射方法,适应不同数据域。还提到了对抗网络和注意力机制在优化模型性能中的作用,特别是在处理数据量有限的医学图像时。
摘要由CSDN通过智能技术生成

一 迁移学习

概念

迁移学习:将某个领域的知识或模式应用到另一个不相关的领域中
域(domain):分为原域和目标域,即某个领域
在这里插入图片描述

分类

迁移学习策略

在这里插入图片描述

迁移学习模式

DCNN

用同一个深度卷积神经网络完成特征提取和分类

混合模式

用DCNN提取特征,用传统分类器进行分类

特征组合分类模式

特征提取又多个DCNN组合完成或组合DCNN和传统方法提取特征,分类由传统分类器完成
在这里插入图片描述

多分类器融合模式

分类由多个分类器的结果整合完成
在这里插入图片描述
其中,目标函数为各分类器损失函数之和。

二次迁移模式

二次迁移模式有一个源域、一个中间目标域 ( 也称为中间源域) 和一个最终目标域。在源域对模型进行第 1 次预训练,然后将模型迁移到中间目标域进行第 2 次预训练,再将经过二次预训练的模型迁移到最终目标域进行再训练。
在这里插入图片描述
目标函数为临时目标域和最终目标域损失函数之和

比较

在这里插入图片描述

二 基于迁移学习的医学图像分类

医学图像中常用预处理模型

在这里插入图片描述

迁移学习方法

基于模型参数

先使用源域的大量数据对模型预训练,然后将得到的权重参数进行迁移,最后使用少量目标数据 重新训练全连接层
适用场景:原任务与目标任务相近

基于特征提取

将 CNN 模型作为特征提取器 ,然后使用少量医学数据对网络进行微调,基于不同的微调策略训练出来的 CNN 模型性能也不同,所以微调策略是该类方法被关注的重点
适用场景:原数据与目标数据相近

基于特征映射

两个域之间存在差异,但经过设计映射到新的数据空间后,可能 更加相似。该方法通过调整源域数据的边际分布或条件分布后进行特征映射,以扩大训练集的规模,增强迁移学习的效果,可以降低模型对目标数据的依赖性
适用场景:原数据与目标数据相差较大

结合对抗网络

GAN是一种有效的数据增强方式,增加训练样本能够有效提升网络模型参数。目前的应用有:先在MRI图像上用GAN生成网络,再迁移到CT图像中一个具有注脚的文本1

结合注意力机制

对于医学图像领域,注意力机制可以自动聚焦图像 中对疾病诊断重要的关键部分,从而提升模型性能,但会占用计算资源。

参考文献

[1]黎英,宋佩华.迁移学习在医学图像分类中的研究进展[J].中国图象图形学报,2022,27(03):672-686.
[2]高爽,徐巧枝. 迁移学习方法在医学图像领域的应用综述[J]. 计算机工程与应用, 2021, 57(24): 39-50.


  1. LIAO X ,QIAN Y,CHEN Y,et al.MMTLNet:multi-modality transfer learning network with adversarial training for 3D whole heart segmentation[J].Computerized Medical Imaging and Graphics,2020,85:101785. ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值