583. 两个字符串的删除操作
对于字符串的删除操作,在确定好了dp数组的含义:dp[i][j]表示到达word1下标i-1,word2下标j-1相等时所需要的最小步数,这样对于dp数组的初始化可以根据内在含义来进行,对于dp[i][0]表示要把前i个元素全部删除,j也同样:
for(int i=0;i<=word1.size();i++)dp[i][0]=i;
for(int j=0;j<=word2.size();j++)dp[0][j]=j;
再来分析递归函数,每一次移动都有两种可能:相等或者不等;
当相等时,dp[i][j]=dp[i-1][j-1](不用考虑这两个元素了);
当不相等时,dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][i-1]+2)(删除word1、删除word2、删除两个)
此外,在写出递推表格验证。
for(int i=1;i<=word1.size();i++){
for(int j=1;j<=word2.size();j++){
if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
else{
dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+2));
}
}
}
72. 编辑距离
定义dp数组dp[i]为使word1[i-1]之前的数组完全转化为word[j]所需要的最小步数,此时初始化dp数组,dp[i][0]=i,dp[0][j]=j,最后就是可能出现的情况,倘若当前i-1元素与j-1元素相等,此时dp[i][j]=dp[i-1][j-1],若是不相等则有三种可能:需要增加:dp[i][j]=dp[i][j-1]+1;需要删除:dp[i][j]=dp[i-1][j]+1;需要替换dp[i][j]=dp[i-1][j-1]+1:
for(int i=1;i<=word1.size();i++){
for(int j=1;j<=word2.size();j++){
if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
else{
dp[i][j]=min({dp[i-1][j-1]+1,dp[i-1][j]+1,dp[i][j-1]+1});
}
}
}
最后的元素就是所需要的最小步数