【c++算法篇】双指针(下)

Alt

🔥个人主页Quitecoder

🔥专栏算法笔记仓

Alt

朋友们大家好啊,本篇文章我们来到算法的双指针的第二部分

1.有效三角形的个数

题目链接611. 有效三角形的个数
题目描述
在这里插入图片描述

这道题当然可以暴力求解,三层循环枚举所有情况,来进行判断,但是可以进行优化:

我们知道,三角形的满足条件是任意的两边之和大于第三边,但是如果我们已经判断了较小的两个边大于第三边,就不需要再进行剩下两组的判断,所以我们先进行排序,再进行枚举:

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        sort(nums.begin(),nums.end());
      }
};

具体讲解一下我们的思路:

这里使用的是一种双指针技术:固定最长的边(也就是数组中的最大值),使用两个指针来查找剩余部分中可能的两个较短边。如果找到了两个较短边的长度和大于最长边,那么这三者能构成一个三角形

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        
        int count=0;
        for(int i=nums.size()-1;i>=2;i--)
        {
            int lat=i-1,pre=0;
            while(pre<lat)
            {
                if(nums[pre]+nums[lat]>nums[i])
                {
                count+=lat-pre;
                lat--;
                }
                else pre++;
            }
        }
        return count;
    }
};

它利用了一个重要的性质:如果你有三条边长分别为 a, b 和 c,且 a ≤ b ≤ c,那么 a, b 和 c 可以构成一个三角形当且仅当 a + b > c

步骤如下:

  1. 对数组 nums 进行升序排序
  2. 初始化计数器 count 为 0
  3. 从后往前遍历数组(从最大值开始,下标为 i),我们将这个值作为潜在的最长边 c
  4. 对于每一个 c,设置两个指针:pre 指针指向数组的开始(下标为 0),lat 指针指向 c 之前的元素(下标为 i - 1
  5. pre 指针小于 lat 指针时:
    • 计算 nums[pre]nums[lat] 的和,将这个和与 nums[i](也就是当前的 c)进行比较
    • 如果 nums[pre] + nums[lat] > nums[i],由于数组已经排序,所有在 prelat 之间的元素与 nums[lat] 的和都会大于 nums[i],所以我们可以将 lat - pre 个三角形加到 count
    • 然后将 lat 向左移动一位(减小一点以寻找下一个可能的三角形)
    • 如果和小于等于 nums[i],我们将 pre 向右移动一位(增大一点以寻找可能的三角形)
  6. 当处理完所有的 c 后,返回 count 作为结果

本道题还是很简单的

2.查找总价格为目标值的两个商品

题目链接LCR 179.查找总价格为目标值的两个商品
题目描述在这里插入图片描述

算法的具体思路:

  1. 初始化两个指针,pre 指向数组的开始(索引 0),last 指向数组的末尾(索引 price.size() - 1
vector<int> s1;
int last=price.size()-1;
int pre=0;
  1. 进行一个 while 循环,在数组两端移动 prelast 指针直到它们相遇。循环的条件是 pre < last,确保没有重复使用相同的元素。

  2. 在每次循环中,计算两个指针指向的数的和,判断这个和与目标值 target 的关系:

    • 如果和大于 target,那么为了减小和,last 指针左移(减小索引值)
    • 如果和小于 target,那么为了增大和,pre 指针右移(增加索引值)
    • 如果和等于 target
      • 将这两个数添加到结果 vector s1 中。
      • 因为只需要一组解,所以找到一对满足条件的数之后,通过 break 语句退出循环
while(pre<last)
{
     if(price[pre]+price[last]>target)last--;
     else if(price[pre]+price[last]<target)pre++;
     else {
           s1.push_back(price[pre]);
           s1.push_back(price[last]);
           break;
     }
}
  1. 返回结果 vector。如果找到至少一对和为 target 的数,s1 会包含这两个数。如果没有找到,s1 将是空的

完整代码如下:

class Solution {
public:
    vector<int> twoSum(vector<int>& price, int target) {
        vector<int> s1;
        int last=price.size()-1;
        int pre=0;
        while(pre<last)
        {
            if(price[pre]+price[last]>target)last--;
            else if(price[pre]+price[last]<target)pre++;
            else {
                s1.push_back(price[pre]);
                s1.push_back(price[last]);
                break;
            }
        }
        return s1;
    }
};

3.三数之和

题目链接15.三数之和
题目描述在这里插入图片描述

对于三数之和,我们大思路如下:

对于示例在这里插入图片描述
我们首先进行排序:
在这里插入图片描述
然后,首先固定第一个数,只需要在后面的数中找到两个数使三个数相加和为0即可

对于后面的数的寻找,我们可以设置前后指针,如果三数之和大于零,则让较大的数减小点,即右指针左移,三数之和小于零,则让左指针右移,如果等于零,则讲这三个数据插入到目标数组中继续遍历

注意,上面的{-1,0,1}这三个数是可以构成目标数的,但是必须跳过其中一个-1,因为不能重复

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        vector<vector<int>> result;
        sort(nums.begin(),nums.end());
        for(int i=0;i<nums.size()-2;i++)
        {
            if(i>0&&nums[i-1]==nums[i])continue;
            int pre=i+1,las=nums.size()-1;
            while(pre<las)
            {
                if(nums[pre]+nums[las]<(-nums[i]))pre++;
                else if(nums[pre]+nums[las]>(-nums[i]))las--;
                else{
                    result.push_back({nums[i],nums[pre],nums[las]});
                    while(pre<las&&nums[pre+1]==nums[pre])pre++;
                    while(pre<las&&nums[las-1]==nums[las])las--;
                    pre++;
                    las--;
                }
            }
        }
        return result;
    }
};

注意的要点:

  1. 唯一性:返回的结果中不能包含重复的三元组。解决方法是在找到一个符合条件的组合后,跳过所有相同的元素

  2. 遍历策略:外层循环遍历数组,内层使用双指针从两端向中间查找两个其他元素,以保证三个数的和为零

  3. 跳过重复元素

  • 在外层循环中,如果当前的数字与前一个数字相同,则跳过以避免重复的三元组
 for(int i=0;i<nums.size()-2;i++)
{
    if(i>0&&nums[i-1]==nums[i])continue;
  • 在找到一个满足条件的三元组之后,同时跳过 pre 指针的连续重复数字,并将 pre 指针向右移动
  • 同样地,跳过 las 指针的连续重复数字,并将 las 指针向左移动
  1. 寻找条件:三数之和等于零。这意味着在内层循环中,如果 nums[pre] + nums[las] 小于 -nums[i],则需要右移 pre 指针;如果大于 -nums[i],则需要左移 las 指针;如果等于 -nums[i],则记录该三元组,继续寻找其他可能的组合

  2. 边界条件

    • 外层循环的循环变量 i 应小于 nums.size() - 2,因为需要至少3个数来组成一个三元组
    • prelas 指针相遇时,内层循环结束

我们还可以进一步优化,当i对应的数字大于零,意味着无论如何结果都大于零,就可以直接break了:

for(int i=0;i<nums.size()-2;i++)
{
    if(i>0&&nums[i-1]==nums[i])continue;
    if(nums[i]>0)break;

4.四数之和

题目链接18.四数之和
题目描述在这里插入图片描述

这道题与上面三数求和大体思路一样,我们这次一次固定两个数,然后再遍历剩下的数,遇见相同的数就往后移动

注意
上道题数组长度是大于等于3的,而这道题nums数组长度大于等于1,意味着可能不存在四个数,所以首先我们先判断数组长度,如果小于四直接返回空数组

if(nums.size()<4)return{};

首先进行排序工作

接着开始完成函数内容,需要固定两个数,我们则需要嵌套两个循环,注意边界值即可:

vector<vector<int>> result;
sort(nums.begin(), nums.end());
for(int i = 0; i < nums.size()-3; i++) {
   if (i > 0 && nums[i] == nums[i - 1]) continue; 
   for (int j = i + 1; j < nums.size()-2; j++) {
   if (j > i + 1 && nums[j] == nums[j - 1]) continue; 
                ——————————
}

这里处理逻辑与上面一样,先跳过相同的数,在j的循环中,我们就进行和上面相同的操作了

int pre = j + 1;
int last = nums.size() - 1;
while (pre < last) {
    long long sum = (long long)nums[i] + nums[j] + nums[pre] + nums[last]; 
    if (sum < target) {
        pre++;
    }
    else if (sum > target) {
        last--;
    }
    else {
        result.push_back({ nums[i], nums[j], nums[pre], nums[last] });
        while (pre < last && nums[pre] == nums[pre + 1]) pre++; 
        while (pre < last && nums[last] == nums[last - 1]) last--; 
        pre++;
        last--;
    }
}

本题还有一个关键点

在这里插入图片描述
它提供的值不一定是整形,所以上面函数中我们使用长整型来避免溢出

总代码如下:

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        if (nums.size() < 4)return{};
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        for (int i = 0; i < nums.size() - 3; i++) {
            if (i > 0 && nums[i] == nums[i - 1]) continue; 
            for (int j = i + 1; j < nums.size() - 2; j++) {
                if (j > i + 1 && nums[j] == nums[j - 1]) continue; 
                int pre = j + 1;
                int last = nums.size() - 1;
                while (pre < last) {
                    long long sum = (long long)nums[i] + nums[j] + nums[pre] + nums[last];
                    if (sum < target) {
                        pre++;
                    }
                    else if (sum > target) {
                        last--;
                    }
                    else {
                        result.push_back({ nums[i], nums[j], nums[pre], nums[last] });
                        while (pre < last && nums[pre] == nums[pre + 1]) pre++;
                        while (pre < last && nums[last] == nums[last - 1]) last--;
                        pre++;
                        last--;
                    }
                }
            }
        }
        return result;
    }
};

5.双指针常见场景总结

双指针主要应用在有序数组或链表的问题中,以及一些可以通过前后关系来优化问题的场景:

  1. 有序数组的对撞指针

    • 两数之和:在有序数组中找到两个数,使它们的和为特定的目标值
    • 三数之和/四数之和:与两数之和类似,但需要找到三个或四个数的组合
    • 移除元素:从有序数组中移除重复项或特定值,并返回新数组的长度
  2. 快慢指针

    • 链表中环的检测:使用快慢指针检测链表是否有环,快指针一次移动两步,慢指针一次移动一步
    • 寻找链表中点:使用快慢指针找到链表的中间节点,快指针结束时慢指针在中点
    • 寻找链表的倒数第k个元素:快指针先移动k步,然后快慢指针共同移动,快指针到达末尾时慢指针所在位置即倒数第k个元素
  3. 前后指针

    • 归并排序中的合并步骤:使用两个指针分别指向两个有序数组的开始位置,以合并成一个新的有序数组。
    • 对链表进行操作:在链表上进行操作时,如删除节点或反转链表,常常需要前后指针来保持结点的连接。
  4. 左右指针

    • 二分查找:在有序数组中查找元素,使用左右指针限定查找范围

双指针方法的关键在于,指针的移动可以依据问题的规律来减少不必要的比较或计算,从而提高算法效率。当然,双指针的使用需要充分理解问题的性质,并巧妙设计指针的移动策略。在很多问题中,双指针技术都能将时间复杂度从 O(n2) 优化到 O(n),超级好用

本节内容到此结束!!感谢大家阅读!!

评论 197
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QuiteCoder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值