DeepSeek V3的网络结构基本沿用了DeepSeek V2,采用了MLA和DeepSeekMoE两大特性。本文主要涉及MLA(Multi-Head Latent Attention)。抛开维度变化,DeepSeek V3与V2在MLA结构上差别不大。详细请参见官方论文《DeepSeek-V3 Technical Report》和《DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model》。
关于MLA的介绍网上很多,不多讲了。这里将论文中的示意图,公式与官方代码(modeling_deepseek.py
)的对应关系做了标注。
论文中还提到matrix absorption的优化:
Fortunately, due to the associative law of matrix multiplication, we can absorb
W
U
K
W^{UK}
WUK into
W
U
Q
W^{UQ}
WUQ, and
W
U
V
W^{UV}
WUV into
W
O
W^{O}
WO.
为了方便看出差别,这里按论文中的convention整了下matrix absorption后的示意图和公式,并标注了对应关系。代码由于官方没给出,参考的是SGLang中python/sglang/srt/models/deepseek_v2.py
里的DeepseekV2AttentionMLA::forward_absorb
。
其中matrix absorption的部分由于计算只涉及权重参数,因此可以提到初始化时,或者离线做。实现可以参考FlashInfer中tests/test_mla_decode_kernel.py
中的DeepseekV2AttentionMatAbsorbDecode
。
但注意该优化适用于generation阶段,不适用于prefill阶段。看下优化前后的相关两部分计算量比较:
将模型参数代入可发现,generation阶段时可以减少计算量,而prefill阶段时不能。