Stata:断点回归(RDD)中的平滑性检验

原文链接:https://www.lianxh.cn/news/4d4afce3f6af1.html

1. 背景

断点回归 ( RDD ) 已经成为当前微观计量经济学分析政策效果的重要手段,而样本的随机分配被认为是该项工作的黄金律。因为只有样本在临界值 ( cut-point ) 的领域范围内是随机分布的,那么模型估计在临界值处的平均因果效应 ( ATE ) 才是政策实施对于处理组和控制组之间的差异的无偏估计值。

然而,在现实经验研究中,样本的随机分配往往难以得到满足,经常出现样本分配机制人为干预现象。

例如,学校开展对于期末考试分数低于某一值的学生进行强制的暑期培训,如果学生们提前知道这个分数值 ( 如 60 分 ),那么原本考试成绩在这个分数值附近的学生就会加倍努力或与老师套近乎 (寻租) 而通过考试,避免参加暑期培训项目。这意味着通过考试的学生数量会在断点 ( 60 分 ) 右侧有一个数量上的明显上升,致使评价参加暑期培训是否能够提高学生的考试成绩的平均因果效应 ( ATE ) 存在偏差。

下面,我们通过模拟数据的形式来展现样本在临界值处有人为干预的现象。

4. 参考资料

(1) Lee D S. Randomized experiments from non-random selection in US House elections[J]. Journal of Econometrics, 2008, 142(2): 675-697.[pdf]

(2) McCrary J. Manipulation of the running variable in the regression discontinuity design: A density test[J]. Journal of econometrics, 2008, 142(2): 698-714.[pdf]

(3) Bugni F A, Canay I A. Testing Continuity of a Density via g-order statistics in the Regression Discontinuity Design[J]. arXiv preprint arXiv:1803.07951, 2018.[pdf]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值