Stata权重设定-fweight-pweight

本文介绍了在数据分析中如何使用weight变量,如fweight处理重复观测值,pweight适应抽样概率差异,aweight反映观测值的均值权重。通过实例解析,掌握在Stata中正确运用权重以提高估计精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/4dbc40eb41c3d.html

目录

1. 简介

1.1 为何要使用 weight

在数据分析中有时需要为观测值设置不同的权重,例如以下情形:

  • 在抽样过程中,不同子总体里的个体被抽中的概率不同,那么不同样本个体代表的总体数量也不同,需要以权重进行反映。例如,在分层抽样中,按男性/女性分别抽样,男性组个体被抽中的概率是 0.1 ,女性组个体被抽中的概率是 0.05,则一个男性观测值能代表 10 个男性,一个女性观测值能代表 20 个女性;
  • 如果我们有的不是个体数据,而是某个组或某个地理区域的数据均值,则该均值的信息含量随着其代表的个体数量增多而更大。例如,10 万人城市的收入均值的信息含量比 1 万人城市的收入均值更大。如果我们能以权重对城市人数进行反映,数据估计将更有效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值