哈伦2019
码龄3年
  • 334,270
    被访问
  • 93
    原创
  • 8,016
    排名
  • 368
    粉丝
关注
提问 私信

个人简介:金融大数据统计

  • 加入CSDN时间: 2019-03-04
博客简介:

哈伦2019的博客

博客描述:
数据分析软件
查看详细资料
  • 5
    领奖
    总分 1,277 当月 71
个人成就
  • 获得243次点赞
  • 内容获得86次评论
  • 获得1,786次收藏
创作历程
  • 21篇
    2022年
  • 9篇
    2021年
  • 39篇
    2020年
  • 30篇
    2019年
成就勋章
TA的专栏
  • ArcGis
    1篇
  • Amos
    2篇
  • 随笔
  • R语言
    21篇
  • stata
    11篇
  • Python
    64篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

金融统计分析与挖掘实战8.3-8.4

第八章 上市公司综合评价# 设置工作路径和导入基本数据分析包import osos.chdir("C:\\Users\\Administrator\\Desktop") #设置路径import pandas as pdimport numpy as np8.3 基于总体规模与投资效率的综合评价8.3.1 数据读取与处理data=pd.read_excel('data.xlsx') #读取数据data2=data.iloc[data['Accper'].values=='2016-12
原创
发布博客 前天 15:22 ·
46 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战7.6-7.7

7.6 沪深300指数走势预测import osos.chdir("C:\\Users\\Administrator\\Desktop") #设置路径import pandas as pdimport numpy as np7.6.1 读取数据td=pd.read_excel('index300.xlsx') # 读取数据td.head(6) # 查看前6行 Indexcd Idxtrd01 Idxtrd02
原创
发布博客 2022.05.13 ·
248 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战7.3-7.5

# 7.3 上市公式净利润增长率计算import osos.chdir("C:\\Users\\Administrator\\Desktop")import pandas as pddt = pd.read_excel('data2.xlsx') #获取数据dt.head(6) Stkcd Accper B002000101 0 16 2014-12-3
原创
发布博客 2022.05.11 ·
110 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战6.1-6.3

# 6.1 关联规则import numpy as npimport pandas as pdimport osos.chdir("C:\\Users\\Administrator\\Desktop") #更改工作路径,注意双\\ 任何操作前可以先将常用包和路径先设置好# 6.2.1 一对一关联规则挖掘# 将原始数据转化为布尔数值表tiem = ['西红柿','排骨','鸡蛋','茄子','袜子','酸奶','土豆','鞋子']data = pd.read_excel('tr.xlsx'
原创
发布博客 2022.05.04 ·
615 阅读 ·
0 点赞 ·
1 评论

金融数据分析与挖掘实战5.6-5.7

# 5.6 支持向量机#汽车评价数据,6个特征变量,1个分类标签,共1728条记录#要求取1690条记录作为训练集,余下的作为测试集,计算预测准确率import numpy as npimport pandas as pdimport osos.chdir("C:\\Users\\Administrator\\Desktop") #更改工作路径,注意双\\ 任何操作前可以先将常用包和路径先设置好# 1.读取数据data = pd.read_excel("car.xlsx")datah
原创
发布博客 2022.04.29 ·
94 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战5.3-5.5

# 5.3 线性回归应用# 一、准备工作(导入包,输入数据,选择变量)import numpy as npimport pandas as pdimport osos.chdir("C:\\Users\\Administrator\\Desktop") #更改工作路径,注意双\\ 任何操作前可以先将常用包和路径先设置好data = pd.read_excel("发电场数据.xlsx")datah = data.head(6) #看前6行的数据,本例中有9000多样本,显示全占用篇幅较大
原创
发布博客 2022.04.27 ·
496 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战5.1-5.2

# 第5章 机器学习包# 5.2.1 缺失值处理import numpy as npimport pandas as pdimport osos.chdir("C:\\Users\\Administrator\\Desktop") #更改工作路径,注意双\\ 任何操作前可以先将常用包和路径先设置好data = pd.read_excel("missing.xlsx") #将文件放到工作路径下,用该命令读取数据print(data) a b c d0 2.
原创
发布博客 2022.04.22 ·
546 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战3.3.3-3.5

# 3.3.3 数据框# 8.as_matrix()报错import pandas as pdimport numpy as nplist1 = [1,2,3,4,5,6]list2 = [2,3,4,5,6,7]D = pd.DataFrame({"m1":list1,"m2":list2})print(D) m1 m20 1 21 2 32 3 43 4 54 5 65 6 7D1 = D.as_matrix()
原创
发布博客 2022.04.13 ·
143 阅读 ·
0 点赞 ·
0 评论

金融统计分析与挖掘实战3.3.1-3.3.3

# 3.3 数据框 # 特征:多个序列按照相同的索引组成的二维表# 3.3.1 数据框的创建import pandas as pdimport numpy as np # 先导入两个最常用的数据处理分析包data = {"a" : [2,2,np.nan,5,6],"b" : ["kl","kl","kl",np.nan,"kl"],"c" : [4,6,5,np.nan,6],"d" : [7,9,np.nan,9,8]} #生成一个字典df = pd.DataFrame(data)
原创
发布博客 2022.04.08 ·
1573 阅读 ·
2 点赞 ·
0 评论

金融统计分析与挖掘实战3.1-3.2

# 第三章 数据处理包 pandas# 3.2序列#3.2.1 序列的创建与访问import pandas as pdimport numpy as np # 数据分析前先导入两个最常见的包# 创建序列# 列表、元组和数组转化为序列s1 = pd.Series([1,-2,2.3,'hq']) #把列表转换为序列print(s1) #虽然我们没写索引,但系统默认了索引0 11 -22 2.33 hqdtype: objecttyp
原创
发布博客 2022.04.06 ·
926 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战练习2.10

# 2.10矩阵及线性代数的运算# 2.10.1 创建矩阵import numpy as npmat1 = np.mat("1 2 3 ; 4 5 6 ; 7 8 9")print(mat1)[[1 2 3] [4 5 6] [7 8 9]]type(mat1)numpy.matrixmat2 = np.matrix([[1,2,3],[4,5,6],[7,8,9]])print(mat2)[[1 2 3] [4 5 6] [7 8 9]]type(mat2)n
原创
发布博客 2022.04.01 ·
450 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战练习2.5-2.9

# 2.5.1数组切片#满足条件的切片import numpy as npD = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]) #定义数组print(D)[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12] [13 14 15 16]]# 将D中的第0列大于5的所有列数据取出D1 = D[D[ : ,0] > 5, : ]print(D1)[[ 9 10 11 12]
原创
发布博客 2022.04.01 ·
217 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战练习2.1-2.4

#逻辑运算符3 and 443 and 5 and 8 # 如果用and连接多个正整数,那么将显示最后的那个83 and 8 and 553 or 5 or 8 #如果用or连接多个正整数,那么将显示最前面的那个38 or 5 or 385 > 3 < 4 #相当于5>3 and 3<4True#逻辑否运算 not5 > 4True not 5 > 4Falsenot 3 > 4True
原创
发布博客 2022.03.25 ·
610 阅读 ·
0 点赞 ·
0 评论

金融数据分析余挖掘实战1.9-1.10补充

# 1.9.2 有返回值的函数def sumt(t): #求1一直加到t的和 s = 0 while t > 0: s = s + t t = t - 1 return ss = sumt(30) #从1加到30的结果print(s)465s = sumt(50) #从1加到50的结果print(s)1275# 如果返回命令写错,比如写成了返回 tdef sumt1(t): #求1一直加到t的和
原创
发布博客 2022.03.23 ·
331 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战练习-1.9

# if while 的综合运用# 猜数字#请猜我心中的那个数字(假如是10)s = input("请猜测我心中记住的那个数字是:")guess = int(s)if guess == 10: print("你很聪明呀,一下子就猜对了!")else: print("很遗憾!我心中的那个数字是10")print("游戏结束,不玩啦!") #缩进很重要,此处顶格写,表示是最外层的程序,一定会执行请猜测我心中记住的那个数字是:10你很聪明呀,一下子就猜对了!游戏
原创
发布博客 2022.03.18 ·
3791 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战1.7-1.8

#1.7练习:如果成绩为60分以下,记为E,60-70 记为D,70-80 记为C ,80-90记为B,# 90-100记为A,某个同学成绩为75分,请设计一个if语句打印输出结果#采用if语句进行操作score = 75if 100 >= score >= 90: #最基础、最直接的条件表达 print("A")if 90 > score >= 80: print("B")if 80 > score >= 70: print(
原创
发布博客 2022.03.16 ·
563 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战1.6-1.7

#1.6 字典的基本操作# 创建字典d = dict() #创建一个空字典d = {}type(d)dictlist1 = [("a",'ok'),('1','lk'),("001",'lk')] #列表中嵌套元组d1 = dict(list1)print(d1){'a': 'ok', '1': 'lk', '001': 'lk'}list11 = [("a",'ok'),('a','lk'),("001",'lk')] #列表中嵌套元组d11 = dict(lis
原创
发布博客 2022.03.11 ·
319 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战1.5.2-1.5.3

元组,字符串的基本操作
原创
发布博客 2022.03.09 ·
122 阅读 ·
1 点赞 ·
0 评论

金融数据分析与挖掘实战1.4.4-1.5.1

# 1.4.4 统计L1 = [1,2,3,4,5,6]t1 = (1,2,3,4,6)s2 = 'hello word!'m1 = max(L1)print(m1)6m2 = max(t1)print(m2)6m3 = min(t1)print(m3)1m4 = sum(L1)print(m4)21m5 = max(s2)print(m5)wm6 = min(s2) # 不输出结果print(m6)J1 = {1,2,3,4,5,6
原创
发布博客 2022.03.08 ·
119 阅读 ·
0 点赞 ·
0 评论

金融数据分析与挖掘实战1.3.1-1.3.6

Python基础
原创
发布博客 2022.03.02 ·
77 阅读 ·
0 点赞 ·
0 评论
加载更多