Stata:如何处理固定效应模型中的单期数据-xtfesing

本文介绍了如何使用Stata中的xtfesing命令处理固定效应模型中的一期数据问题。xtfesing命令基于GMM框架,允许在存在单期数据样本的情况下进行估计,以提高效率。当个体的组内变化率为0时,此方法尤为适用。文章还提到了使用xtdes命令检查单期数据占比,并建议在占比超过5%时考虑使用xtfesing进行稳健性检验,可提升约8%-9%的估计效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:Stata:如何处理固定效应模型中的单期数据-xtfesing| 连享会主页

目录

1. 简介

固定效应模型通过剔除不随时间变化的因素,即只考虑组内变换,来缓解遗漏变量偏误问题。但是,当某些个体只有一期数据时,他们的组内变化完全等于零,此时该如何处理呢?

本文将介绍由 Magazzini (2020) 提出的 xtfesing 命令。该命令是在 GMM 框架下构建的,允许在固定效应模型中使用一期数据样本,旨在提高估计效率。该命令的有效性依赖于同质性假设,即面板和单期 OLS 估计的偏差相同。

在使用过程中,我们可以使用 xtdes 命令统计  的样本占比。如果较高 (超过 5%),我们可以考虑使用 xtfesing 命令做稳健性检验。该命令在应用中可提高大约 8%-9% 的估计效率。

全文阅读:Stata:如何处理固定效应模型中的单期数据-xtfesing| 连享会主页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值