Stata:定制论文中表1-table1

全文阅读:Stata:定制论文中表1-table1| 连享会主页

目录


1. 命令介绍

table1_mc 是 Phil Clayton 编写的外部命令,用于为论文制定一个特征性事实描述的表格。

* 命令安装 ssc install table1_mc, replace
* 命令语法 table1_mc [if] [in] [weight], vars(var_spec) [options] var_spec = varname vartype [%fmt1 [%fmt2]] [ \ varname vartype [%fmt1 [%fmt2]] \ ...]

默认情况下,table1_mc 会输出指定变量的基线特征结果。var_spec 用于指定的变量集合,其中:

  • varname:指定单个变量,若进行多个变量的分析需要用反斜杠 \ 隔开;
  • vartype:指定描述变量的类型,且不可省略,否则代码报错。具体包括以下 7 种变量类型:
    • contn:用于服从正态分布的连续变量,返回均值和标准误;
    • contln:用于服从对数正态分布的连续变量,返回几何平均值和几何标准误;
    • conts:用于不服从正态分布与对数正态分布的连续变量,返回中位数与上下四分位数;
    • cat:类别变量,采用 Pearson 卡方检验组别差异;
    • cate:类别变量,采用 Fisher 精确检验组别差异;
    • bin:二分类变量,采用 Pearson 卡方检验组别差异;
    • bine:二分类变量,采用 Fisher 精确检验组别差异;
  • %fmt1:变量结果输出格式设定,参考 format 的输出语法;
  • %fmt2:变量其他结果输出格式设定,参考 format 的输出语法。

options 如下:

  • by(varname):分组变量,且 varname 必须是字符串或者数字,并且仅包含非负整数,无论是否增加值标签;
  • missing:对于 cat 和 cate 的类别变量,将缺失值视为一个新的类别;
  • test:结果包括描述显著性检验的方法;
  • statistic:结果包括描述检验统计量值的列;
  • percent:报告二 (多) 分类变量在所属组别的比重;
  • percent_n:以 %(n) 格式报告二 (多) 分类变量在所属组别的比重与个数;
  • slashN:以 n/N 替代 n (%) 的格式报告二 (多) 分类变量在所属组别的统计内容;
  • catrowperc:报告多分类变量在不同组别的行百分比;
  • pdp(#):设定  值小数位数;
  • saving(filename [, export_excel_options]):设定输出到 Excel 中的文件名与其他选项;
  • clear: 将 Stata 内存数据集用 table1_mc 结果替换。

全文阅读:Stata:定制论文中表1-table1| 连享会主页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值