Stata:异质性DID代码详解

阅读全文:Stata:异质性DID代码详解

作者:严安冬 (加州大学河滨分校)  
邮箱ayan013@ucr.edu

编者注:本文由原作者在 Di Liu 博士于 Stata Webinar 展示的异质性 DID 课程的基础上,对代码细节进行了解释并提供了案例。原 Stata Webinar 可以通过 Webinars | Stata (注册后可以浏览) 找到,译者将课程视频和 PDF 文件的链接附在下面

Source:Saadaoui, J., 2023, Blog, Heterogeneous Difference-in-Differences with Stata -Link-

1. 回顾 TWFE 模型的问题

我们首先考虑双重固定效应 (TWFE) 模型下可能出现的问题:

yit=θt+ηi+ditα+νityit​=θt​+ηi​+dit​α+νit​

其中处理效应的估计量可以分解为:

α=∑wkGoodDIDk+∑wjBadDIDjα=∑wk​GoodDIDk​+∑wj​BadDIDj​

我们考虑三种不同的控制组与处理组的比较情形:

  1. 新处理组 vs 控制组 (从不处理组) (良好)
  2. 新处理组 vs 尚未处理组 (良好)
  3. 新处理组 vs 已经处理组 (差)

在上述模型中,我们用 ditdit​ 作为虚拟变量来表示个体 ii 在时间 tt 期是否受到了处理。我们需要了解在上述的双重固定效应的估计量中,它可能混合了“好”的比较 (情况 1 和情况 2) 和“坏”的比较 (情况 3)。原因在于,当我们将新处理组与对照组 (情况 1) 和尚未处理组 (情况 2) 进行比较时,我们是能够识别处理效应的,这样的控制对照是“好”的。然而,当处理效应存在异质性时,将新处理组与已经处理组 (情况 3) 进行比较是存在偏误的,而这时的控制对照是“坏”的。

TWFE 估计量在存在异质性效果的情况下,是对“好”比较和“坏”比较的加权平均,并且它打破了平行趋势假设,所以得到的估计量是可能存在偏误的 (上图中的实蓝线与实红线对比;红色组为早处理组,蓝色组为晚处理组,且蓝色组和红色组的处理效应系数不同,存在异质性)。在同质性效果的情况下,如下图所示,TFWE 估计量是有效的,因为平行趋势假设成立,你可以通过比较从 T = 3 期开始处理的实蓝线和实红线来获得对处理组 3 的平均效果 (在上一张图中,存在异质性效果的情况下,两条线并不平行) 。

2. Stata 18 中异质性 DID 的新指令

2.1 实证案例及作图

在 Stata 18 中,新增了两个指令 xthdidregress 和 hdidregress,分别用于面板数据和重复截面数据的估计。这两个指令提供了四种估计量的选择,分别是由 Callaway and Sant’Anna (2021) 提出的 raipwaipw,以及由 Wooldridge (2021) 提出的 twfe

这些新指令的使用可以通过以下案例来加以阐释 (本案例为Callaway and Sant’Anna (2021) 论文中的第五节的实证分析):考虑的结果变量为美国县级的青年就业率,处理变量为州政府实施的最低工资政策。数据涵盖了 2002 年至 2007 年的多期数据,其中处理发生在 2004 年、2006 年和 2007 年这三个时间点。

2.2 ATET 结果

我们用 xthdidregress 作为例子,以下是 指令的实现代码:

# Define Covariates 定义协变量
global covars i.region pop medinc white hs pov c.pop#c.pop c.medinc#c.medinc

# Use AIPW estimator 使用AIPW估计量
xthdidregress aipw (lemp $covars) (treat $covars), group(state)

在这里,我们控制了协变量来保证条件平行趋势,回归总共会有 18 个组与时间的 ATET 估计值 (6 年 ×× 3 组),标准误在州的层级上进行聚类调整。我们可以用 atetplot 指令得到对处理组的平均处理效应 (ATET) 的趋势图:

estat atetplot, sci

其中,我们使用 sci 选项来同时得到置信区间。结果如下图所示:

 阅读全文:Stata:异质性Stata: 

Stata是一个统计软件,广泛用于数据管理和统计分析。区域异质性估计(Regional Heterogeneity Estimation)通常指的是在经济或社会科学领域中,研究不同区域间的经济差异、社会特征等。在Stata中进行区域异质性估计可能涉及到数据的整理、模型的选择和参数的估计等步骤。 一个基本的Stata代码示例可能包含以下几个步骤: 1. 数据准备:导入或准备数据,包括区域数据和相关的经济、社会等变量。 2. 模型设定:根据研究目的设定相应的统计模型,如固定效应模型、随机效应模型、混合效应模型等。 3. 变量处理:创建新的变量或对现有变量进行转换,以适应模型需求。 4. 模型估计:使用Stata的`xtreg`命令估计固定效应模型,使用`mixed`命令估计混合效应模型等。 5. 结果解释:对模型估计结果进行解读,包括系数的经济含义、统计显著性等。 6. 模型诊断:进行模型诊断,比如检查异方差、序列相关等。 下面是一个简化的Stata代码示例: ```stata * 导入数据 import excel "路径\数据.xlsx", firstrow clear * 设置面板数据结构 xtset region_id time_id * 估计固定效应模型 xtreg outcome_var explanatory_vars, fe * 或者估计随机效应模型 xtreg outcome_var explanatory_vars, re * 估计混合效应模型 mixed outcome_var explanatory_vars || region_id: , variance * 输出结果 estat ic ``` 以上代码只是一个非常基础的框架,实际应用中需要根据具体的数据和研究目标来调整模型的设定和估计方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值