【Stata双重差分模型】双重差分DID的具体操作步骤

目录

一、简介

二、数据准备

数据收集:

数据清洗:

变量定义:

三、模型构建

四、实证分析

描述性统计:

平行趋势检验:

双重差分估计:

安慰剂检验:

异质性分析:

五、结果解读与讨论

六、结论与展望

七、DIDI扩展内容

八、附录


一、简介

双重差分法(DID)是一种经济学中常用的计量方法,用于评估某一事件或政策的影响。通过比较实验组和对照组在事件发生前后的变化,DID能够有效地分离出事件或政策的影响。本案例将详细阐述如何使用双重差分法进行实证分析,并展示具体的STATA操作代码。

在中国知网以“双重差分”“倍差法”“DID”按篇名、主题、关键词、摘要、小标题检索,2017年后使用双重差分方法的论文数量急剧上升,超越了工具变量法(instrumental variable)、倾向得分匹配法(PSM)、断点回归设计(regression discontinuity design)等社会科学领域实证研究常用方法。据有关不完全统计,从2020年开始,国内外核心、权威期刊约有20%的实证论文采用了DID方法。

二、数据准备

数据收集

假设我们要评估一项新的就业培训政策对失业人员再就业的影响。我们收集了实施该政策的地区(实验组)和未实施该政策的地区(对照组)的相关数据。数据包括个人的年龄、性别、教育水平、失业时长以及是否再就业等信息。

数据清洗

在数据分析之前,需要对数据进行清洗,以确保数据的准确性和完整性。这包括检查数据的一致性、处理缺失值和异常值等。

* 检查数据的一致性
describe

* 处理缺失值
drop if missing(age) | missing(gender) | missing(education) | missing(unemployment_duration) | missing(reemployment)

* 处理异常值(例如,删除失业时长小于0的记录)
drop if unemployment_duration < 0

变量定义

定义所需的变量,包括被解释变量(是否再就业)、解释变量(政策实施虚拟变量和时间虚拟变量)以及控制变量(年龄、性别、教育水平和失业时长)。

* 定义变量
gen policy = (treatment == 1 & year >= policy_year) // 政策实施虚拟变量
gen time = (year >= policy_year) // 时间虚拟变量

三、模型构建

基于双重差分法,我们构建以下回归模型:

其中,Reemployment𝑖𝑡是个体 𝑖在时间 𝑡是否再就业的二进制变量;Policy𝑖𝑡是政策实施虚拟变量;Time𝑖𝑡是时间虚拟变量;Xit​ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值