Tarjan 算法

Tarjan 算法

一.算法简介

Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度。

 

我们定义:

如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

例如:在上图中,{1 , 2 , 3 , 4 } , { 5 } ,  { 6 } 三个区域可以相互连通,称为这个图的强连通分量。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

再Tarjan算法中,有如下定义。

DFN[ i ] : 在DFS中该节点被搜索的次序(时间戳)

LOW[ i ] : 为i或i的子树能够追溯到的最早的栈中节点的次序号

当DFN[ i ]==LOW[ i ]时,为i或i的子树可以构成一个强连通分量。

 

二.算法图示

以1为Tarjan 算法的起始点,如图

顺次DFS搜到节点6

 回溯时发现LOW[ 5 ]==DFN[ 5 ] ,  LOW[ 6 ]==DFN[ 6 ] ,则{ 5 } , { 6 } 为两个强连通分量。回溯至3节点,拓展节点4.

拓展节点1 , 发现1再栈中更新LOW[ 4 ],LOW[ 3 ] 的值为1

 回溯节点1,拓展节点2

自此,Tarjan Algorithm 结束,{1 , 2 , 3 , 4 } , { 5 } ,  { 6 } 为图中的三个强连通分量。

不难发现,Tarjan Algorithm 的时间复杂度为O(E+V).

三.算法模板

复制代码

 1 void Tarjan ( int x ) {
 2          dfn[ x ] = ++dfs_num ;
 3          low[ x ] = dfs_num ;
 4          vis [ x ] = true ;//是否在栈中
 5          stack [ ++top ] = x ;
 6          for ( int i=head[ x ] ; i!=0 ; i=e[i].next ){
 7                   int temp = e[ i ].to ;
 8                   if ( !dfn[ temp ] ){
 9                            Tarjan ( temp ) ;
10                            low[ x ] = gmin ( low[ x ] , low[ temp ] ) ;
11                  }
12                  else if ( vis[ temp ])low[ x ] = gmin ( low[ x ] , dfn[ temp ] ) ;
13          }
14          if ( dfn[ x ]==low[ x ] ) {//构成强连通分量
15                   vis[ x ] = false ;
16                   color[ x ] = ++col_num ;//染色
17                   while ( stack[ top ] != x ) {//清空
18                            color [stack[ top ]] = col_num ;
19                            vis [ stack[ top-- ] ] = false ;
20                  }
21                  top -- ;
22          }
23 }

复制代码

 

注:本文章上部分内容转载自http://www.cppblog.com/sosi/archive/2010/09/26/127797.html;一方面是网上有很多关于tarjan算法的介绍,我觉得都没有这个他的文章介绍的简明易懂或者没有具体的实现。另一方面,自己也顺便用java实现了一下,所以发表出来和大家分享分享!

 

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

 

[Tarjan算法]

Tarjan算法是基于对图深度优

定义DFN(u)D记录搜索到该u的时间,也就是第几个搜索u的。Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

 

 

算法伪代码如下

tarjan(u)
{

    DFN[u]=Low[u]=++Index     // 为节点u设定次序编号和Low初值

    Stack.push(u)                     // 将节点u压入栈中

    for each (u, v) in E               // 枚举每一条边

          if (v is not visted)          // 如果节点v未被访问过

                  tarjan(v)              // 继续向下找

                  Low[u] = min(Low[u], Low[v])

            else if (v in S)            // 如果节点v还在栈内

            Low[u] = min(Low[u], DFN[v])

    if (DFN[u] == Low[u])        // 如果节点u是强连通分量的根

       repeat

           v = S.pop                  // 将v退栈,为该强连通分量中一个顶点

           print v

      until (u== v)

}

 

 

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

 

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

算法java实现如下:

Tarjan类:

 

 
  1. import java.util.ArrayList;

  2. import java.util.Arrays;

  3. import java.util.List;

  4. import java.util.Stack;

  5.  
  6.  
  7. public class Tarjan {

  8. private int numOfNode;

  9. private List< ArrayList<Integer> > graph;//图

  10. private List< ArrayList<Integer> > result;//保存极大强连通图

  11. private boolean[] inStack;//节点是否在栈内,因为在stack中寻找一个节点不方便。这种方式查找快

  12. private Stack<Integer> stack;

  13. private int[] dfn;

  14. private int[] low;

  15. private int time;//

  16.  
  17. public Tarjan(List< ArrayList<Integer> > graph,int numOfNode){

  18. this.graph = graph;

  19. this.numOfNode = numOfNode;

  20. this.inStack = new boolean[numOfNode];

  21. this.stack = new Stack<Integer>();

  22. dfn = new int[numOfNode];

  23. low = new int[numOfNode];

  24. Arrays.fill(dfn, -1);//将dfn所有元素都置为-1,其中dfn[i]=-1代表i还有没被访问过。

  25. Arrays.fill(low, -1);

  26. result = new ArrayList<ArrayList<Integer>>();

  27. }

  28.  
  29. public List< ArrayList<Integer> > run(){

  30. for(int i=0;i<numOfNode;i++){

  31. if(dfn[i]==-1){

  32. tarjan(i);

  33. }

  34. }

  35. return result;

  36. }

  37.  
  38. public void tarjan(int current){

  39. dfn[current]=low[current]=time++;

  40. inStack[current]=true;

  41. stack.push(current);

  42.  
  43. for(int i=0;i<graph.get(current).size();i++){

  44. int next = graph.get(current).get(i);

  45. if(dfn[next]==-1){//-1代表没有被访问

  46. tarjan(next);

  47. low[current]=Math.min(low[current], low[next]);

  48. }else if(inStack[next]){

  49. low[current]=Math.min(low[current], dfn[next]);

  50. }

  51. }

  52.  
  53. if(low[current]==dfn[current]){

  54. ArrayList<Integer> temp =new ArrayList<Integer>();

  55. int j = -1;

  56. while(current!=j){

  57. j = stack.pop();

  58. inStack[j]=false;

  59. temp.add(j);

  60. }

  61. result.add(temp);

  62. }

  63. }

  64.  
  65. }

  66.  
  67.  

测试类:

 

 

 
  1. import java.util.ArrayList;

  2. import java.util.List;

  3. import java.util.Stack;

  4.  
  5.  
  6. public class Main {

  7. public static void main(String[] args) {

  8. //创建图

  9. int numOfNode = 6;

  10. List< ArrayList<Integer> > graph = new ArrayList<ArrayList<Integer>>();

  11. for(int i=0;i<numOfNode;i++){

  12. graph.add(new ArrayList<Integer>());

  13. }

  14. graph.get(0).add(1);

  15. graph.get(0).add(2);

  16. graph.get(1).add(3);

  17. graph.get(2).add(3);

  18. graph.get(2).add(4);

  19. graph.get(3).add(0);

  20. graph.get(3).add(5);

  21. graph.get(4).add(5);

  22. //调用Tarjan算法求极大连通子图

  23. Tarjan t = new Tarjan(graph, numOfNode);

  24. List< ArrayList<Integer> > result = t.run();

  25. //打印结果

  26. for(int i=0;i<result.size();i++){

  27. for(int j=0;j<result.get(i).size();j++){

  28. System.out.print(result.get(i).get(j)+" ");

  29. }

  30. System.out.println();

  31. }

  32.  
  33. }

  34. }

先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值