Tarjan算法详解

一、什么是强连通分量

tarjan强连通分量算法

1. 概念

连通:无向图中,从任意点i可到达任一点j

强连通:有向图中,从任意点i可到达任一点j

弱连通:把有向图看作无向图时,从任意点i可到达任一点j
在这里插入图片描述

  • 如图,强连通无论那个点,都能按照方向到达任意一点,弱连通如果强行按方向,那么B到不了C,A到不了B和C,C到不了B。但如果把他看作是无向图,那么他们也能满足连通条件。

2. 强连通分量

整个图并不是强连通的,但是在某些局部区域,他确实也符合强连通的要求,如下图,整张图不算是强连通,但是局部还是能满足强连通条件的。
在这里插入图片描述

二、两种dfs遍历

1. 方式1

先访问当前节点,再递归相邻节点
在这里插入图片描述

  • 如上图所示,先访问A,将A标记为已访问之后,我再去访问B,依次下去,B这个分支访问完了,再退回来dfs(F)。如果发现当前节点已经被访问过了,直接结束。因为既然已经被访问过了,那么他相邻的点必然也被访问过来,自然无需访问。

2. 方式2

先递归相邻节点,再访问当前节点
在这里插入图片描述

  • 如上图所示,实际上就是顺序变了,有点像二叉树的后序遍历?对,就是后序遍历,这也是tarjan算法的核心。

三、一个简单例子理解算法

  • 对于节点x,我有两个变量来表示他的信息,i表示访问顺序(时间戳),j表示按照方向进行访问,能够访问到的最早的节点的时间戳
    在这里插入图片描述

  • 如上,A的时间戳为1,B时间戳为2,C时间戳为3,D时间戳为4

  • A能访问到的最早的时间戳为1,B能访问到的最早的时间戳为2,C能先访问D,再访问到B所以最早时间戳也为2,D也是,能访问到的最早时间戳为2

  • 有相同j值的节点构成一个强连通区域,如上图,B、C、D构成一个强连通区域,A自己构成一个强连通区域

四、更完整的一个例子

在这里插入图片描述

  • 这里肯定会有人问,那我通过什么方法来更新j的值呢,这里我们可以根据打印顺序来进行寻找,先打印EE只能访问到自己,于是E(5,5),然后打印DD可以访问到B,于是D(4,2),然后打印CC能访问到DD有最早时间戳2,于是C(2,2),然后再打印BB(2,2),然后开始DFS(F),说明之前的确实已经完成了打包了,B、C、D是一个强连通域,接着如上面步骤,找出AFG这个强连通域

五、Code实现

public class Main {
    static int time = 1;
    static Stack<Integer> stack = new Stack<>();
    static int[] dfn;//表示i属性
    static int[] low;//表示j属性
    static int n;//节点个数

    public static void main(String[] args) {
        n = 10;
        dfn = new int[n];//初始化
        low = new int[n];//初始化
        for (int i = 0; i < n; i++) {
            if (dfn[i] == 0) {
                DFS(i);
            }
        }
    }

    public static void DFS(int x) {
        stack.push(x);
        dfn[x] = time;
        low[x] = time;
        time++;
        for (int y = 0; y < n; y++) {
            if (x和y是连通的) {
                if (dfn[y] == 0) {//y这个节点没有被访问过
                    DFS(y);
                    low[x] = Math.min(low[x], low[y]);//更新最早时间戳
                } else if (如果y已经被访问过了,但是y在stack里面){
                    low[x] = Math.min(low[x], low[y]);
                }
            }
        }
        if (dfn[x] == low[x]) {//如果我将他整个儿子都完成了遍历,结果他的访问时间戳和最早时间戳相等,说明我整个强连通分量的节点全部访问完了
            stack.pop();
        }
    }
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

走出半生仍是少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值