C#数值计算之模拟退火法简介(二)

在上一篇文章中讲述了模拟退火的基本原理,以下以一个实际的例子来说明,其中所有的源码已贴出,可以从中了解到很多细节。


使用模拟退火法求函数f(x,y) = 5sin(xy) + x2 + y2的最小值

 

解:根据题意,我们设计冷却表进度表为:

即初始温度为100

衰减参数为0.95

马可夫链长度为10000

Metropolis的步长为0.02

结束条件为根据上一个最优解与最新的一个最优解的之差小于某个容差。

 

 

使用METROPOLIS接受准则进行模拟, 程序如下

 

/*

 *  模拟退火法求函数f(x,y) = 5sin(xy) + x^2 + y^2的最小值

 *  日期:2004-4-16

 *  作者:ARMYLAU

* EMAIL:[email protected]

 *  结束条件为两次最优解之差小于某小量

 */

using System;

namespace SimulateAnnealing

{

     class Class1

     {

          // 要求最优值的目标函数

         static double ObjectFunction( double x, double y )

         {

              double z = 0.0;

              z = 5.0 *

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值