LeetCode 5024 除数博弈 --(简单博弈论)

今天在LeetCode的看到一到题目题目
这道题目有点坑,没有思路的话容易钻牛角。
刚刚开始时,我想的是直接用while循环来模拟计算,后来觉得这么好麻烦,也有复制的逻辑在里面。后面我推导了一下
以下是我的推导过程,爱丽丝简称 A 鲍勃 简称B
当num=2时,A=1-->num=num-1=1,A赢
当num=3时,A只能出1,-->num=num-1=2,此时B正好处于num=2的情况,所以B可以用之前A的策略,B赢
当num=4时,A可以出1 或 2,但是为了赢,A必须让B处于输的情况,也就是num=3的情况。所以A出1,-->num=num-1=3
当num=5时,A可以出1,-->num=num-1=4,此时B正好处于num=4的情况,B赢
当num=6时,A可以出1,2,3,但是A为了赢,必须让B处于必输的情况下,A出1-->num=num-1,当B出时,num=5,B输。
以此类推,
我们可以得出结论
当N%2==0时,先出的赢
当N%2!=0时,后出的赢****
所以这道题目的解为

    public boolean divisorGame(int N) {
        if(N%2==0){
            return true;
        }else{
            return false;
        }
    }

就是这么简单。
我之前还做过另一个类似的题目。
题目好像是:

两个人,轮流报数 1或2 ,然后不停往上加,谁加到30谁就赢。
其实用的是同样的思想。
这种思想和博弈论一样,都是在最理性的情况下进行分析的,
bilibili有好多类似的视频 av7852097 红眼岛岛民自杀事件
海盗分金什么的

转载于:https://www.cnblogs.com/duangL/p/11575106.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值