机器学习(2)概率问题

不确定性的来源

噪声:测量的可变性、部分可观测性、不正确标签
有限的样本量:训练和测试数据是随机抽取的实例

处理不确定性的方法

模糊逻辑、定性推理
#随机变量
随机变量是一个函数,将唯一的数值和实验每个结果相关联

离散概率分布

在这里插入图片描述

连续概率分布

在这里插入图片描述
一般概率用牛顿莱布尼兹法计算
在这里插入图片描述
在这里插入图片描述

统计特征

  • 期望、方差
    一维高斯(法向)密度
    在这里插入图片描述
  • 中心极限定理
    在这里插入图片描述
  • 独立性
    P(A ∩ B) = P(A) * P(B)
  • 条件概率
    在这里插入图片描述
    在这里插入图片描述
    条件独立性:
    在这里插入图片描述
    贝叶斯公式:
    在这里插入图片描述
    贝叶斯的更多形式:
    在这里插入图片描述
  • 联合和边缘概率
    联合概率:用链式法则和独立性假设来计算
  • 密度估计
    密度估计器学习从一组属性带概率的映射,若分布形式是指定的(二项式、高斯。。。),通常被称作高斯分布
    重要问题:数据的性质(是否相关,。。。);目标函数(MLE、MAP)、算法(简单代数、梯度法、EM)
    评价方案(数据的似然性,可预测性,一致性)
    从iid(独立同分布)学习参数:
    目标:从独立同分布中D = {x1, . . . , xN}估计分布参数θ
    最大似然估计(MLE):在独立同分布和完全可观测性假设下可写作:
    在这里插入图片描述
    选择最能保证我们数据的参数集合
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 过度拟合
    若投几次硬币全是朝上,那么下次预测应该是向上吗?
    在这里插入图片描述

所以我们采用平滑的方法:

在这里插入图片描述

  • 贝叶斯法则
    共轭先验
    在这里插入图片描述

  • 迪利克雷分布
    在这里插入图片描述

  • MAP和MIE的对比
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值