李宏毅ML lecture-4,5 分类以及逻辑回归

李宏毅ML lecture-4,5 分类以及逻辑回归

交叉熵(cross-entropy)

http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-entropy_cost_function

首先定义正向传播算法:
(1) z = w x + b z=wx+b \tag{1} z=wx+b(1)
(2) a = σ ( z ) a= \sigma(z) \tag{2} a=σ(z)(2)
定义loss为交叉熵:
(1) C = − 1 n ∑ x [ y ln ⁡ a + ( 1 − y ) ln ⁡ ( 1 − a ) ] C = -\frac{1}{n} \sum_x \left[y \ln a + (1-y ) \ln (1-a) \right] \tag{1} C=n1x[ylna+(1y)ln(1a)](1)
应用链式法则计算反向传播:
∂ C ∂ w j = − 1 n ∑ x ∂ C ∂ a ∂ a ∂ z ∂ z ∂ w j                                       = − 1 n ∑ x ( y a − ( 1 − y ) 1 − a ) σ ′ ( z ) x j .                = 1 n ∑ x ( a − y ) σ ′ ( z ) x j a ( 1 − a ) \frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_x \frac{\partial C}{\partial a}\frac{\partial a}{\partial z}\frac{\partial z}{\partial w_j} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =-\frac{1}{n} \sum_x \left( \frac{y }{a} -\frac{(1-y)}{1-a} \right) \sigma'(z) x_j. \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \frac{1}{n} \sum_x \frac{(a-y)\sigma'(z) x_j}{a (1-a)} wjC=n1xaCzawjz                                     =n1x(ay1a(1y))σ(z)xj.              =n1xa(1a)(ay)σ(z)xj
已知sigmod函数的导数:
σ ′ ( z ) = σ ( z ) ( 1 − σ ( z ) ) = a ( 1 − a ) \sigma'(z)=\sigma(z)(1-\sigma(z))=a(1-a) σ(z)=σ(z)(1σ(z))=a(1a)
所以:
∂ C ∂ w j = = 1 n ∑ x ( σ ( z ) − y ) x j \frac{\partial C}{\partial w_j} = = \frac{1}{n} \sum_x (\sigma(z)-y) x_j wjC==n1x(σ(z)y)xj
同理可得:
∂ C ∂ b = = 1 n ∑ x ( a − y ) \frac{\partial C}{\partial b} = = \frac{1}{n} \sum_x (a-y) bC==n1x(ay)
为什么在分类的问题需要使用交叉熵而不是欧式距离呢?
C = ( y − a ) 2 2 , C = \frac{(y-a)^2}{2}, C=2(ya)2,
∂ C ∂ w = ( a − y ) σ ′ ( z ) x = \frac{\partial C}{\partial w} = (a-y)\sigma'(z) x= wC=(ay)σ(z)x=
∂ C ∂ b = ( a − y ) σ ′ ( z ) \frac{\partial C}{\partial b} = (a-y)\sigma'(z) bC=(ay)σ(z)
答案就在梯度公式中,

李宏毅ML lecture-6,7 Deep Learning

李宏毅ML lecture-8,9 Keras 练习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值