求组合数(取模)的两种方法

#概述
首先我们要知道什么是组合数。具体可以参考我之前的博客 “排列与组合”笔记 中,集合的组合的部分。

这里复述如下: 令r为非负整数。我们把n个元素的集合S的r-组合理解为从S的n个元素中对r个元素的无序选择。换句话说,S的一个r-组合是S的一个子集,该子集由S的n个元素中的r个组成,即S的一个r-元素子集。

由此,求解组合数即变成了求式子C(n, r) 的值。

#法一:Pascal公式打表
由Pascal公式(参考 组合数学笔记之二——二项式系数),我们知道
{ C ( n , k ) =   C ( n − 1 , k − 1 ) + C ( n − 1 , k ) C ( n , 0 ) =   C ( n , n ) = 1 \left\{ \begin{aligned} C(n, k) = &\ C(n - 1, k - 1) + C(n - 1, k) \\ C(n, 0) = &\ C(n, n) = 1 \end{aligned} \right. {C(n,k)=C(n,0)= C(n1,k1)+C(n1,k) C(n,n)=1
取二维数组 tC[][] ,初始化 tC[0][0] = 1; 打表即可。代码最简单,如下:

const int maxn(1005), mod(100003);
int tC[maxn][maxn]; //tC 表示 table of C

inline int C(int n, int k)
{
    if(k > n) return 0;
    return tC[n][k];
}

void calcC(int n)
{
    for(int i = 0; i < n; i++)
    {
        tC[i][0] = 1;
        for(int j = 1; j < i; j++)
            tC[i][j] = (C(i - 1, j - 1) + C(i - 1, j)) % mod;
        tC[i][i] = 1;
    }
}

计算 C ( n , k ) C(n, k) C(n,k) 返回内联函数 C ( n , k ) C(n, k) C(n,k) 的值即可。

当然我们知道 C ( n , k ) = C ( n , n − k ) C(n, k) = C(n, n - k) C(n,k)=C(n,nk) ,所以上面的代码有很多空间和时间的浪费。可以将 tC[][] 二维数组转化为一维数组存储,同时,当 j &gt; i / 2 j &gt; i / 2 j>i/2 时终止第二层循环,新代码如下:

const int maxn(10005), mod(100003);
int tC[maxn * maxn]; //tC 表示 table of C

inline int loc(int n, int k) // C(n, k)返回在一维数组中的位置
{
    int locate = (1 + (n >> 1)) * (n >> 1); // (n >> 1) 等价于 (n / 2)
    locate += k;
    locate += (n & 1) ? (n + 1) >> 1 : 0; // (n & 1) 判断n是否为奇数
    return locate;
}

inline int C(int n, int k)
{
    if(k > n) return 0;
    k = min(n - k, k);
    return tC[loc(n, k)];
}

void calcC(int n)
{
    for(int i = 0; i < n; i++)
    {
        tC[loc(i, 0)] = 1;
        for(int j = 1, e = i >> 1; j <= e; j++)
            tC[loc(i, j)] = C(i - 1, j) + C(i - 1, j - 1);
    }
}

同样,要得到 C ( n , k ) C(n, k) C(n,k) 只需要返回内联函数 C ( n , k ) C(n, k) C(n,k) 的值即可。

显然,由于空间的限制,pascal打表的方式并不适合求取一些比较大的组合数。例如,我们现在要求取的组合数的 n n n 的范围是 [ 1 , 1000000 ] [1, 1000 000] [1,1000000] , 那么我们应该怎么办呢? 那就轮到方法二大显身手了。
#法二:逆元求取组合数
由定理可知:如果用C(n, r)表示n-元素集的r-组合的个数,有 C ( n , r ) = n ! r ! ∗ ( n − r ) ! C(n, r) = \frac {n!} {r! * (n - r)!} C(n,r)=r!(nr)!n!

而我们的目标就是计算 C ( n , r ) % m o d C(n, r) \% mod C(n,r)%mod 的值。

由数论的知识我们知道,模运算的加法,减法,乘法和四则运算类似,即:
模运算与基本四则运算有些相似,但是除法例外。其规则如下:

  • (a + b) % p = (a % p + b % p) % p
  • (a - b) % p = (a % p - b % p) % p
  • (a * b) % p = (a % p * b % p) % p

但对于除法却不成立,即(a / b) % p ≠ \neq ̸= (a % p / b % p) % p 。

显然数学家们是不能忍受这种局面的,他们扔出了**“逆元”**来解决这个问题。那么什么是逆元? 逆元和模运算中的除法又有什么关系呢?

首先给出数论中的解释:

对于正整数 a a a p p p,如果有 a x ≡ 1 ( m o d p ) ax \equiv 1 ( mod p) ax1(modp),那么把这个同余方程中 x x x 的最小正整数解叫做 a a a p p p 的逆元。

什么意思呢? 就是指,如果 a x % p = 1 ax \% p = 1 ax%p=1 , 那么x的最小正整数解就是 a a a 的逆元。

现在我们来解决模运算的除法问题。假设我们要计算的是 a b % p \frac a b \% p ba%p的值 m m m,即 a b % p = m      ( a 和 b 满 足 a % b = 0 ) \frac a b \% p = m \ \ \ \ (a和b满足 a \% b = 0) ba%p=m    (aba%b=0)

同时存在另一个数 x x x 满足 a x % p = m ax \% p = m ax%p=m

由模运算对乘法成立,两边同时乘以 b b b ,得到: a % p = ( m ( b % p ) ) % p a \% p = (m(b \% p)) \% p a%p=(m(b%p))%p

如果 a a a b b b 均小于模数 p p p 的话,上式可以改写为: a = b m % p a = bm \% p a=bm%p

等式两边再同时乘以 x x x, 得到: a x % p = m % p = x b m % p ax \% p = m \% p = xbm \% p ax%p=m%p=xbm%p

因此可以得到: b x % p = 1 bx \% p = 1 bx%p=1

哎,x是b的逆元呀(x 在模运算的乘法中等同于 1 b \frac 1 b b1, 这就是逆元的意义)

由以上过程我们看到,求取 ( a b % p ) (\frac a b \% p) (ba%p) 等同于 求取 ( a ∗ ( b 的 逆 元 ) % p ) (a * (b的逆元) \% p) (a(b)%p) 。 因此,求模运算的除法问题就转化为就一个数的逆元问题了。

而求取一个数的逆元,有两种方法

  1. 拓展欧几里得算法

  2. 费马小定理

对于利用拓展欧几里得算法求逆元,很显然,如果 b x % p = 1 bx \% p = 1 bx%p=1,那么 b x + p y = 1 bx + py = 1 bx+py=1, 直接利用 exgcd(b, p, x, y)(代码实现在后面给出),则 ( x % p + p ) % p (x \% p+ p) \% p (x%p+p)%p 即为 b b b 的逆元。

对于第二种方法,因为在算法竞赛中模数p总是质数,所以可以利用费马小定理 b p − 1 % p = 1 b^{p-1} \% p = 1 bp1%p=1

可以直接得到 b b b 的逆元是 b p − 2 b^{p-2} bp2 , 使用 快速幂 求解即可。

明白了以上几个关键点,那么求取组合数 C ( n , r ) C(n, r) C(n,r) 的算法就呼之欲出了:

  1. 求取1到n的阶乘对 mod 取模的结果存入数组 JC[] 中;
  2. 求取 C ( n , r ) C(n, r) C(n,r) 时, 先利用“拓展欧几里得算法”或者“费马小定理+快速幂”求 JC[r]的逆元存入临时变量 x 1 x_1 x1 ;
  3. 然后计算 J C [ n ] ∗ x 1 % m o d JC[n] * x_1 \% mod JC[n]x1%mod 存入临时变量 x 2 x_2 x2;( x 2 x_2 x2 即为 n ! r ! % m o d \frac {n!} {r!} \% mod r!n!%mod 的值)
  4. 求取JC[n - r] 的逆元存入临时变量 x 3 x_3 x3;
  5. 则可以得到 C ( n , r ) = x 2 ∗ x 3 % m o d C(n, r) = {x_2} * {x_3} \% mod C(n,r)=x2x3%mod

下面是方法二的代码片段:

typedef long long LL;
const LL maxn(1000005), mod(1e9 + 7);
LL Jc[maxn];

void calJc()	//求maxn以内的数的阶乘
{
    Jc[0] = Jc[1] = 1;
    for(LL i = 2; i < maxn; i++)
        Jc[i] = Jc[i - 1] * i % mod;
}
/*
//拓展欧几里得算法求逆元
void exgcd(LL a, LL b, LL &x, LL &y)	//拓展欧几里得算法
{
    if(!b) x = 1, y = 0;
    else
    {
        exgcd(b, a % b, y, x);
        y -= x * (a / b);
    }
}

LL niYuan(LL a, LL b)	//求a对b取模的逆元
{
    LL x, y;
    exgcd(a, b, x, y);
    return (x + b) % b;
}
*/

//费马小定理求逆元
LL pow(LL a, LL n, LL p)	//快速幂 a^n % p
{
    LL ans = 1;
    while(n)
    {
        if(n & 1) ans = ans * a % p;
        a = a * a % p;
        n >>= 1;
    }
    return ans;
}

LL niYuan(LL a, LL b)	//费马小定理求逆元
{
    return pow(a, b - 2, b);
}

LL C(LL a, LL b)	//计算C(a, b)
{
    if(a < b) return 0;
    return Jc[a] * niYuan(Jc[b], mod) % mod
        * niYuan(Jc[a - b], mod) % mod;
}

以上即为逆元求取组合数的方法,无论使用拓展欧几里得还是费马小定理,一开始求取Jc数组是的复杂度是 O ( n ) O(n) O(n),拓展欧几里得算法和费马小定理的复杂度均为 O ( l g ( m o d ) ) O(lg(mod)) O(lg(mod)) , 如果要求取m次组合数,则总的时间复杂度为 O ( m n l g ( m o d ) ) O(mnlg(mod)) O(mnlg(mod)).

以上です。

<think>好的,我现在需要解决用户的问题:如何用线性逆元高效计算组合数,并给出算法实现。首先,我需要回顾一下用户提供的引用内容,看看有哪些已有的信息可以利用。 根据引用[2]和引用[4],用户提到了两种逆元的方法费马小定理和线性算法。用户特别关注的是线性逆元的应用,所以重点应该放在线性逆元方法上。引用[4]中的代码使用了费马小定理来计算阶乘的逆元,而用户现在想用线性逆元的方法,也就是引用[2]中的第二种方法。 首先,我需要理清组合数的计算公式。组合数C(n, m)的公式是n!/(m!*(n-m)!))。在运算中,除法需要转换为乘以逆元。因此,组合数可以表示为:C(n,m) % p = (n! * inv(m!) * inv((n-m)!)) % p,其中inv表示逆元。 接下来,线性逆元的计算方法。引用[2]中的线性算法部分给出了一个预处理逆元数组的方法,预处理每个数的逆元。代码示例中的ny数组是通过递推公式计算的:ny[i] = (p - p/i) * ny[p%i] % p。这里的ny[i]是i的逆元。这种方法可以在O(n)的时间内预处理出1到n的逆元。 但这里有个问题,组合数计算中需要的是阶乘的逆元,而不是单个数的逆元。所以,可能需要分两步处理:首先预处理出每个数的逆元,然后计算阶乘的逆元。例如,先预处理inv[1...n],然后阶乘的逆元可以通过递推得到,比如infact[i] = infact[i-1] * inv[i] % p。这样,阶乘的逆元可以通过线性时间计算出来。 再看引用[3],其中提到了一种同时计算阶乘和逆元的方法,使用了一个递推式。可能这种方法可以更高效地同时处理阶乘及其逆元。但用户现在希望用线性逆元的方法,也就是先预处理每个数的逆元,再计算阶乘的逆元。 所以,步骤大致如下: 1. 预处理逆元数组inv,其中inv[i]是i在p下的逆元,使用线性递推方法。 2. 计算阶乘数组fact,其中fact[i] = i! % p。 3. 计算阶乘的逆元数组infact,其中infact[i] = (i!)^{-1} % p。这可以通过infact[i] = infact[i-1] * inv[i] % p来计算。 4. 组合数C(n,m)的计算公式即为 fact[n] * infact[m] % p * infact[n-m] % p。 现在需要验证这个过程是否正确。例如,假设已经计算了fact数组和infact数组,那么组合数的计算是否正确。是的,因为每个阶乘的逆元已经预先计算好了,相乘即可得到分母部分的逆元。 接下来要考虑的是实现中的细节,比如数组的大小,预处理的范围。如果n和m的最大值较大,比如1e5或者更高,需要确保数组足够大。例如,在引用[4]的代码中,预处理了N=1e5+10的阶乘和阶乘逆元。用户的问题中可能需要类似的预处理。 那么具体的实现步骤: 预处理部分: - 初始化fact[0...maxN]和infact[0...maxN],以及inv[1...maxN]。 - fact[0] = 1,然后fact[i] = fact[i-1] * i % p。 - 预处理inv数组,使用线性递推:inv[1] = 1,然后对于i>=2,inv[i] = (p - p/i) * inv[p % i] % p。 - 计算infact数组:infact[0] = 1,然后infact[i] = infact[i-1] * inv[i] % p。 这样,当需要计算C(n,m)时,只要n和m不超过maxN,就可以直接通过fact[n] * infact[m] % p * infact[n-m] % p得到结果。 需要注意的是,这种方法的时间复杂度是O(maxN),对于多次查询组合数的情况非常高效,因为预处理后每次查询都是O(1)时间。 现在需要检查是否存在可能的错误。例如,当p不是质数时,线性逆元的方法是否有效?根据线性递推的条件,p必须是质数才能确保每个数都有逆元吗?其实,线性逆元方法i和p互质,所以当p是质数时,1到p-1的数都与p互质,此时可以正确计算逆元。如果p不是质数,可能某些i没有逆元,导致预处理失败。因此,该方法适用于p为质数的情况。 用户提供的引用中,例如引用[2]中的费马小定理部分提到p为素数且a和p互质。所以,这里可能需要假设p是一个足够大的质数,这样预处理才能正确进行。 因此,在实现中,需要确保p是质数,并且在预处理时处理到足够大的maxN,以满足后续查询的n和m的范围。 现在,编写代码的大致结构: 首先预处理inv数组,然后fact和infact数组。例如: const int maxN = 1e5 + 10; int fact[maxN], infact[maxN], inv[maxN]; int p; // 数,假设为质数 void preprocess() { fact[0] = infact[0] = 1; inv[1] = 1; for (int i = 2; i < maxN; ++i) inv[i] = (p - p / i) * inv[p % i] % p; for (int i = 1; i < maxN; ++i) { fact[i] = fact[i-1] * i % p; infact[i] = infact[i-1] * inv[i] % p; } } 然后,计算组合数时: int C(int n, int m) { if (m < 0 || m > n) return 0; return fact[n] * infact[m] % p * infact[n - m] % p; } 但需要确保n和m都不超过maxN-1,否则数组会越界。如果n可能很大,比如达到1e5,则需要预先设置maxN足够大。或者,如果n的范围不确定,可能需要动态处理,但预处理通常适用于已知最大范围的情况。 测试一下是否正确。例如,当p=1e9+7,计算C(5,2)=10。按照上述步骤: fact[5] = 120,infact[2] = 2的阶乘逆元的逆元。假设inv[2]=500000004(因为2*500000004 mod 1e9+7=1),infact[2] = infact[1] * inv[2] → infact[1]是1的逆元的乘积。可能过程需要更仔细的计算。 或者,可能直接通过阶乘的逆元来计算。例如,fact[5]=120,infact[2]= (2!)^{-1} = (2)^{-1} * (1)^{-1} → 但按照infact的计算方法,infact[i] = infact[i-1] * inv[i],所以infact[2] = infact[1] * inv[2}。而infact[1} = inv[1}=1。所以infact[2}=1 * inv[2}。inv[2}是500000004。因此,infact[2}=500000004。同理,infact[3}=infact[2} * inv[3},以此类推。 所以,当计算C(5,2)时,fact[5] * infact[2} * infact[3}。即120 * 500000004 * 333333336 % 1e9+7。计算这个值: 500000004 * 333333336 = (1/2) * (1/3) = 1/6,所以乘以120得到20。但正确的结果是10。这说明哪里出错了? 哦,这里可能哪里弄错了。例如,C(5,2)=10。但根据上述计算,结果得到的是20? 可能我的计算有误。让我们详细计算: 假设p=1e9+7,此时: fact[5] = 120 infact[2}= (2!)^{-1} = inv[1] * inv[2} = 1 * inv[2} = 500000004 infact[3}= (3!)^{-1} = infact[2} * inv[3} → inv[3}=333333336,所以 infact[3}=500000004 * 333333336 mod p = 500000004 * 333333336 = (1/2) * (1/3) = 1/6 → 因此,infact[3}=166666668. 所以,组合数C(5,2) = 120 * 500000004 * 166666668 % p. 计算这三个数的乘积: 500000004 * 166666668 = ? 先计算500000004 × 166666668: 500000004 * 166666668 = (5e8 +4) * (1.66666668e8) 这可能需要运算中的计算,但直接计算的话: 500000004 × 166666668 = ? 但是1e9+7的话,这些数都是它们在该下的逆元。例如,500000004是2的逆元,166666668是6的逆元。所以,2的逆元乘以6的逆元等于 (2*6)的逆元=12的逆元。但 120 × (2的逆元) × (6的逆元) = 120 × (12的逆元) = 120 /12 =10。所以结果正确。因此,上述方法是正确的。 这说明算法是正确的。 接下来,需要根据这个思路编写代码。例如,引用的代码中,用户提供的引用[4]使用了费马小定理来预处理阶乘的逆元,而用户现在希望用线性逆元的方法,所以需要修改这部分代码,将infact的预处理改为使用线性逆元数组。 因此,正确的代码结构应该是: 预处理inv数组,然后预处理fact和infact数组。例如: #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10; // 假设最大处理到1e5 int fact[N], infact[N], inv[N]; int p; void preprocess() { fact[0] = infact[0] = 1; inv[1] = 1; for (int i = 2; i < N; ++i) { inv[i] = (p - p / i) * 1LL * inv[p % i] % p; } for (int i = 1; i < N; ++i) { fact[i] = fact[i - 1] * 1LL * i % p; infact[i] = infact[i - 1] * 1LL * inv[i] % p; } } int C(int n, int m) { if (m < 0 || m > n) return 0; return fact[n] * 1LL * infact[m] % p * infact[n - m] % p; } int main() { // 示例:假设p是质数,比如1e9+7 p = 1e9 + 7; preprocess(); int n, m; cin >> n >> m; cout << C(n, m) << endl; return 0; } 这样,预处理部分使用线性逆元的方法来计算inv数组,然后用inv数组来递推计算infact数组。这样就避免了使用费马小定理的快速幂方法,从而提高了预处理的速度,尤其是在需要处理大范围的情况下,线性方法更高效。 需要注意的是,这种方法的时间复杂度为O(N),适用于多次查询的情况。同时,需要确保N足够大以覆盖所有可能的n和m值。 用户的问题已经得到了解决,现在需要生成相关问题。根据用户的问题和回答,相关问题可能包括线性逆元的原理、组合数计算的其他方法、或者如何处理更大的n和m的情况等。</think>### 线性逆元组合数算法实现 #### 核心步骤 1. **预处理线性逆元数组**:使用递推公式$inv[i] = (p - \lfloor p/i \rfloor) \cdot inv[p\%i] \% p$,时间复杂度$O(n)$ 2. **计算阶乘数组**:$fact[i] = fact[i-1] \times i \% p$ 3. **计算阶乘逆元数组**:$infact[i] = infact[i-1] \times inv[i] \% p$ 4. **组合数计算**:$C(n,m) = fact[n] \times infact[m] \times infact[n-m] \% p$ #### 算法板 ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 10; int fact[MAXN], infact[MAXN], inv[MAXN], mod; void preprocess() { // 初始化边界条件 fact[0] = infact[0] = 1; inv[1] = 1; // 线性逆元 for (int i = 2; i < MAXN; ++i) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod; // 计算阶乘及其逆元 for (int i = 1; i < MAXN; ++i) { fact[i] = 1LL * fact[i-1] * i % mod; infact[i] = 1LL * infact[i-1] * inv[i] % mod; } } int comb(int n, int m) { if (m < 0 || m > n) return 0; return 1LL * fact[n] * infact[m] % mod * infact[n - m] % mod; } ``` #### 复杂度分析 - **时间复杂度**:预处理$O(n)$,单次查询$O(1)$ - **空间复杂度**:$O(n)$ - **适用条件**:数$p$为质数且$n,m < MAXN$[^2][^4] #### 应用示例 当$p=10^9+7$时,计算$C(10000,5000)$: 1. 预处理阶乘数组和逆元数组 2. 直接调用comb(10000, 5000)即可得到结果 3. 计算结果满足:$C(n,m) \equiv \frac{n!}{m!(n-m)!} \mod p$[^1][^3]
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值