说起大数据,估计大家都觉得只听过概念,但是具体是什么东西,怎么定义,没有一个标准的东西.
因为在我们的印象中好像很多公司都叫大数据公司,业务形态则有几百种,感觉不是很好理解,所以我建议还是从字面上来理解大数据,在维克托迈尔-舍恩伯格及肯尼斯库克耶编写的《大数据时代》提到了大数据的4个特征:
1.大量
大数据的特征首先就体现为“大”.从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。只有数据体量达到了PB级别以上,才能被称为大数据。
1PB等于1024TB,1TB等于1024G,那么1PB等于1024*1024个G的数据。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能工具,服务工具等,都成为数据的来源。
淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.高速
就是通过算法对数据的逻辑处理速度非常快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。
大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。并且这些数据是需要及时处理的,因为花费大量资本去存储作用较小的历史数据是非常不划算的,对于一个平台而言,也许保存的数据只有过去几天或者一个月之内,再远的数据就要及时清理,不然代价太大。
基于这种情况,大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。
3.多样
如果只有单一的数据,那么这些数据就没有了价值,比如只有单一的个人数据,或者单一的用户提交数据,这些数据还不能称为大数据。
广泛的数据来源,决定了大数据形式的多样性。比如当前的上网用户中,年龄,学历,爱好,性格等等每个人的特征都不一样,这个也就是大数据的多样性.
当然了如果扩展到全国,那么数据的多样性会更强,每个地区