序列自相关矩阵的计算和分析

序列自相关矩阵的计算和分析

这几天在搞DSP的时候遇到的一些问题,稍微整理了一下
在下文中,你将会看到:平稳过程到底有什么意义、随机信号处理是如何与固定信号分析联系起来的、自相关函数的定义、自相关矩阵的意义和计算

平稳过程

平稳过程是现代数字信号处理的一个大问题
它的定义是: 统计特性不随时间推移而改变的随机过程
在严格的定义中,它需要随机过程的各阶矩都保持一个稳定的值,称之为严平稳过程。这很难满足
所以在显示生活中,我们通常只关注这个随机过程的一阶矩或者二阶矩是不是保持平均。这就是我们之后要处理的过程,称之为宽平稳过程。
举个例子 :
我们想要测量一个恒压电源的电压
第一组测量 我们测得五个值:{10.3、10.2、10.1、9.7、9.6}
第二组测量 这次测得六个值:{9.9、10.1、10.2、9.6、10.2、10.1}
。。。
这样 在经历多组测量之后,我们将每一组的测量结果分别平均,发现每一组的平均值都在10左右摆动,根据平稳的定义,我们其实是需要,不管我们进行多少组测量、每一组的样本有多少个值,最终我们所得的均值都是10的,这才是一个满足一阶矩平稳的宽平稳过程,在实际中,由于样本数量的限制,我们得到的均值通常是渐进无偏估计,也就是说,在每一组样本个数接近无限的时候才会使得其均值为10,所以如果每一组都在10左右摆动,我们就将其认为是一个平稳过程了。
而另一组同学想要测量一个上升信号的电压
第一组测量得到:{1.1、2.3、2.8、4.0}
第二组测量得到:{5.1、4.3、4.9、6.1}
。。。
在这个测量中,我们发现在不同的组均值不一样了,这就不是一个一阶平稳过程,但是幸运的是,每一组数据的方差又大概保持在一个稳定的值,所以这是一个二阶平稳过程

平稳过程有什么好处呢,很多信号相关的书籍会告诉你这样一句话:如果一个过程满足平稳过程,就可以用它的时间平均来代替其统计平均

这句话是这样理解的,比如在之前一个例子,我们想要知道该恒压电源的电压到底是多少,我们就可以通过测量一组数据,然后平均来估算得出。这种估算方式有一个也许很多人都会认为是自然而然的,但是它其实是建立在一个“该信号一阶平稳”的前提下进行的。

自相关矩阵

在了解了宽平稳过程之后,我们来了解下自相关矩阵的概念
自相关矩阵定义是这样的:
assume

x=[x1x2x3...xn]

the autocorrelation Mat is defined as
E(xxH)=E(x(0)x(0))E(x(1)x(0))...E(x(n)x(0))E(x
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值