机器学习笔记07:神经网络的反向传播(Backpropagation)


——–本文中除了在图片下方标记了出处的图片,均为原创,转载请注明出处——–


上一篇文章《机器学习笔记06:神经网络的表示(Neural Networks-Representation)》 大概描述了神经网络的起源、结构、表示、工作方法及一些应用。今天这篇文章对应 Coursera 上的Stanford机器学习课程的week05。主要的内容是神经网络的学习,包括梯度下降、反向传播等。


1.误差函数(Cost Function)

线性回归和逻辑回归中都用到了误差函数来衡量模型的准确度,当然神经网络也不例外。先来看一个神经网络的图片,这里需要引入一些标记,以便于后面的描述。

这里写图片描述
本图片属于Stanford机器学习课程,转载请注明出处

对于神经网络,有如下几个记号:

NotationRepresentation
{(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m)),} training set (训练集)
L total no. of layers in network (网络的层数)
Slno. of units(not counting bias unit) in layer l (第l层的单元数,不算偏置单元)


对于二元分类问题, y=0 or 1 。输出单元也只有一个。即 SL=1(最后一层只有一个单元);对于多类分类问题(类数大于2),若类数为 K ,则 yRK。如上图的四类分类问题中,有

y=1000,0100,0010,0001
输出层(最后一层)的单元数量也为 K

现在来看误差函数(Cost Function)。先来回顾一下逻辑回归中的误差函数:

J(θ)=1mi=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]+λ2mj=1nθ2j
其中第一项是原来的误差函数,第二项是惩罚项。

现在来看看神经网络的误差函数。首先需要知道 hΘ(x)RK (hΘ(x))i=ithoutput 。神经网络的误差函数可以记为如下:

J(Θ)=1m[i=1mk=1Ky(i)klog(hΘ(x(i)))k+(1y(i)k)log(1hΘ(x(i)))k]+λ2ml=1L1i=1Slj=1Sl+1(Θ(l)ji)2

其中 K 为输出层的单元数,即类数。在计算误差的时候,需要将每一类都计算进去。后面的惩罚项是整个神经网络中所有的参数 Θ 的值之和。注意 i 是从 1 开始,因为我们通常不处理偏差项,就如在逻辑回归中不处理 θ0 一样。以上就是神经网络中误差函数。


2.反向传播算法(Backpropagation Algorithm)

反向传播在神经网络中是一个非常重要的部分。它的主要作用是最小化误差函数,也就是提高神经网络的准确性。和在线性回归和逻辑回归中一样,我们采用梯度下降(Gradient descent)法来最优化误差函数。上面已经说明了误差函数为:

J(Θ)=1mi=1mk=1K[y(i)klog(hΘ(x(i)))k+(1y(i)k)log(1hΘ(x(i)))k]+λ2ml=1L1i=1Slj=1Sl+1(Θ(l)ji)2

在梯度下降的过程中,需要计算每个 Θ 的偏导数,并用来更新 Θ 自身:
Θ(l)ji=Θ(l)jiΘ(l)jiJ(Θ)


用一个样本来说明如何进行反向传播。假设神经网络如下图所示:

这里写图片描述
本图片属于Stanford机器学习课程,转载请注明出处

假如有一个样本 (x,y) 首先,我们需要进行前向传播,也就是计算预测值:
a(1)=x
z(2)=Θ(1)a(1)
a(2)=g(z(2))adda(2)0
z(3)=Θ(2)a(2)
a(3)=g(z(3))adda(3)0
z(4)=Θ(3)a(3)
a(4)=g(z(4))=hΘ(x)
以上的式子都是经过向量化的,具体请参考上一篇文章 《机器学习笔记06:神经网络的表示(Neural Networks-Representation)》 。接下来,为了使用梯度下降法来最小化误差函数,我们需要计算出每个参数 Θ 偏导数,我们就得使用反向传播算法。

首先引入一个标记 δ(l)j ,它表示 l 层上节点(单元) j 的误差。例如,假设有一个四层的神经网络( L=4 )。每一层的误差可以表示如下:

δ(4)=a(4)jyj=hΘ(x)jyj

δ(3)=(Θ(3))Tδ(4).g(z(3))

δ(2)=(Θ(2))Tδ(3).g(z(2))

其中 . 是Matlab中的用法,即矩阵中对应位置相乘。需要注意的是,第一层没有误差,因为输入值本身是通过测量或者其他方式得到的。我们有如下的反向传播公式:
δ(l)=(Θ(l))Tδ(l+1).g(z(l))

同时 g(z(l)) 可写作:
g(z(l))=a(l).(1a(l))

所以
δ(l)=(Θ(l))Tδ(l+1).a(l).(1a(l))

最后可以得到
Θ(l)ij=a(l)jδ(l+1)i
注意,上面的这几个式子都忽略了正则化,之后会添加上去。下面对反向传播进行详细的推导。


3.反向传播公式推导

上面的一节,乱七八糟看不懂没关系,下面来仔细推导一下反向传播。

最重要的一点是思维要清晰。我们需要清楚地知道,训练一个神经网络是为了达到好的预测效果,所以我们要最小化神经网络的误差函数。而最小化误差需要用到梯度下降法,我们又知道,使用梯度下降来最优化参数 Θlij 必须求误差函数 J(Θ) 关于 Θlij 的偏导数。而反向传播的重点即在求 Θlij 的偏导数上。


步骤一:进行前向传播,计算出输入 a(1) 对应的输出 a(L)
其中 L 表示神经网络的层数,前向传播请参考上一篇文章《机器学习笔记06:神经网络的表示(Neural Networks-Representation)》


步骤二:计算输出层的误差
假如有如下神经网络,其中黄色的线代表第二层的偏置单元 a(2)0 的参数 Θ(2)10

这里写图片描述

首先回顾一下神经网络的误差函数:
J(Θ)=1mi=1mk=1K[y(i)klog(hΘ(x(i)))k+(1y(i)k)log(1hΘ(x(i)))k]+λ2ml=1L1i=1Slj=1Sl+1(Θ(l)ji)2

在这里,因为只把计算 Θ(2)10 关于 误差函数 J(Θ) 的偏导数作为例子,并且不考虑后面的惩罚项,所以函数 J(Θ) 可以简化为:
J(Θ)=k=12[y(i)klog(hΘ(x(i)))k+(1y(i)k)log(1hΘ(x(i)))k]

其中上标 i 表示训练集的标签,即第几组样本,这里可以不予考虑,并且,我们只计算 Θ(2)10 的偏导数,只会用到输出节点 a(3)1 ,所以下标 k 也可以不予考虑,所以在这里我们可令:
Cost(Θ)=[ylog(hΘ(x))+(1y)log(1hΘ(x))]

再回顾一下, hΘ(x)=g(z) ,且这里有 z(3)1=Θ(2)10a(2)0+Θ(2)11a(2)1+Θ(2)12a(2)2 。所以我们对参数 Θ(2)10 求偏导如下( 注意:因为第一部分是对 Cost(Θ) 求关于 z(3)1 的偏导数,所以令函数 Cost(Θ) 中的 hΘ(x)=g(z) ):
Θ(2)10J(Θ)=Cost(Θ)z(3)1z(3)1Θ(2)10

我们设 δlj 表示第 l 层上激励神经元节点 j 的误差,在这里设 δ31=Cost(Θ)z(3)1 。所以上面的式子可以继续推导如下:
Θ(2)10J(Θ)=δ31z(3)1Θ(2)10=Cost(Θ)z(3)1a(2)0=a(2)0[y11g(z(3)1)g(z(3)1)(1y1)11g(z(3)1)(g(z(3)1))]=a(2)0[y1g(z(3)1)+1y11g(z(3)1)]g(z(3)1)=a(2)0y1+y1g(z(3)1)+g(z(3)1)y1g(z(3)1)g(z(3)1)(1g(z(3)1))g(z(3)1)=a(2)0g(z(3)1)y1g(z(3)1)(1g(z(3)1))g(z(3)1)(31)

好了,下面我们来计算一下 g(z(3)1) 。首先,我们先来计算一下 g(z) ,随后将 g(z(3)1) 代入即可:
g(z)=(1+ez)2z(1+ez)=(11+ez)2ez(1)=(11+ez)(11+ez)ez=(11+ez)(ez1+ez)=(11+ez)(1+ez1+ez11+ez)=g(z)(1g(z))=a(3)1(1a(3)1)

所以由上式可知 g(z(3)1)=g(z(3)1)(1g(z(3)1)) ,将此式代入 (3-1) 得:
Θ(2)10J(Θ)=a(2)0g(z(3)1)y1g(z(3)1)(1g(z(3)1))g(z(3)1)=a(2)0g(z(3)1)y1g(z(3)1)(1g(z(3)1))g(z(3)1)(1g(z(3)1))=a(2)0(g(z(3)1)y1)=(g(z(3)1)y1)a(2)0=δ(3)1a(2)0

上面的结果 δ(3)1a(2)0 即是误差函数 J(Θ) 关于参数 Θ(2)10 的偏导数。所以,最后一层(输出层)的节点(或称激励单元) a(3)1 的误差为:
δ(3)1=Cost(Θ)z(3)1=g(z(3)1)y1=a(3)1y1

其他输出层中激励单元的误差也同理可得:
δ(3)2=Cost(Θ)z(3)2=g(z(3)2)y2=a(3)2y2

所以对于输出层有 K 个激励单元的 L 层神经网络,其输出层的误差为:
δ(L)=j=1Kδ(L)j=a(L)y

好了,输出层的误差就讲到这里,下面我们要利用输出层的误差,进行反向传播,以求得每个参数 Θ(l)ij 的偏导数。


步骤三:将输出层的误差反向传播,计算每个参数 Θ(l)ij 的偏导数
这部分是最麻烦的地方,也是计算量最大的地方,但也是神经网络的精髓所在。我们以一个最简单的三层神经网络来做例子,其可推广到具有任意层数,且每层有任意个激励单元的神经网络。

假设有如下的神经网络:

这里写图片描述

我们以求参数 Θ(1)11 的偏导数为例,来说明神经网络的反向传播。

由神经网络的前向传播可知:

a(2)1=g(z(2)1)=g(a(1)1Θ(1)11)

a(3)1=g(z(3)1)=g(a(2)1Θ(2)11)

所以:
a(3)1=g(g(a(1)1Θ(1)11)Θ(2)11)=g(g(z(2)1)Θ(2)11)

通过链式求导,我们可知:
Θ(1)11J(Θ)=J(Θ)z(3)1z(3)1z(2)1z(2)1Θ(1)11

步骤二可知 J(Θ)z(3)1=δ(3)1 ,又因为 z(2)1Θ(1)11=a(1)1 ,所以有:
Θ(1)11J(Θ)=δ(3)1z(3)1z(2)1a(1)1

即形象地来看,如下图所示:

这里写图片描述

所以:
Θ(1)11J(Θ)=δ(3)1z(3)1z(2)1a(1)1=δ(3)1a(1)1(g(z(2)1)Θ(2)11)z(2)1=δ(3)1a(1)1g(z(2)1)Θ(2)11=[δ(3)1Θ(2)11g(z(2)1)]a(1)1=δ(2)1a(1)1

故有:
δ(2)1=δ(3)1Θ(2)11g(z(2)1)=δ(3)1Θ(2)11g(z(2)1)(1g(z(2)1))

所以,推广到多层、每层多节点的神经网络,我们得到了反向传播的最重要的公式:
δ(l)=((Θ(l))Tδ(l+1)).g(z(l))=((Θ(l))Tδ(l+1)).g(z(l)).(1g(z(l)))=((Θ(l))Tδ(l+1)).a(l).(1a(l))

上面这个公式即是反向传播中的最重要的公式,其中 Θ(l) 是一个和前向传播中一样的矩阵, δ(l+1) 是一个列向量。至于上面的公式中为什么要转置矩阵,请读者自己画一个三层网络图来模拟一下反向传播便一目了然了。另外需要注意的是,在反向传播过程中,每层中的偏置单元是没有误差的,因为它们始终为1。

结合神经网络的误差公式:

J(Θ)=1m[i=1mk=1Ky(i)klog(hΘ(x(i)))k+(1y(i)k)log(1hΘ(x(i)))k]+λ2ml=1L1i=1Slj=1Sl+1(Θ(l)ji)2

即可得到求任意参数 Θ(l)ij 的偏导数的公式:
Θ(l)ijJ(Θ)=1mt=1mδ(t)(l+1)ia(t)(l)j+λml=1L1i=1Slj=1Sl+1(Θ(l)ji)

其中 m 表示训练集的大小,L 表示网络的层数, SL 表示第 L <script type="math/tex" id="MathJax-Element-115">L</script> 层网络中激励单元的数量。通过上式,我们就能对神经网络执行梯度下降法来训练网络了。


附:Coursera机器学习week6“神经网络的学习”编程作业代码


上面就是神经网络的反向传播,希望能帮助到大家。
如有错误,期望您能纠正,留言或者是e-mail:artprog@163.com

——–转载请注明出处——–

  • 17
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值