Machine Learning---Backpropagation
引言
反向传播法(backpropagration),是一个非常经典的监督学习方法。在前面已经介绍过LMS算法,所以对于这两种之间的公共部分不会再做详细介绍。
一、Backpropagation算法基本介绍
1.算法思想
反向传播算法是监督式学习最流行的方法。
它其中的算法思想就如它的名字一样。它顺序计算了输出值,然后反序将error(计算值和正确值的差值)往回传,进行计算模型中的权值调整。
应用于多层感知器学习算法中,可以解决一些较复杂的问题。
2.权值调整公式
和前面介绍的LMS算法一样,这个算法通过一些给定的训练数据进行权值调整。
其中权值调整公式:
其中表示第i个“输入端”的权值,是学习参数,t是正确值,Y是计算值,是第i个“输入端”的输入值。
我们这里选用这个处理函数是因为它的导数。
这个结果使得导数的计算简单化。
接下来部分是关于这个算法的一些说明:如果没有兴趣的读者可以直接跳过这一段:
首先我们定义一个差值的比方
其中t便是目标值(正确值),y便是计算值,这里去乘于1/2,主要为了之后求导之后的化简。
,这里n便是输入端的数量,便是第i个输入端的权值和输入值。
我们这里设。
按照梯度下降法
其中是一个学习参数,剩下的我们就要求
我们将右边三个分式进行计算:
所以带入公式便是
其实不难发现这个公式在进行一次转换便是上面所提到的
这里我们对这个算法的核心部分进行了简单的数学介绍。关于其中提到的梯度下降算法的知识,笔者已经写过一篇《Machine Learning---LMS 算法数学说明》进行了介绍。
3.算法流程
对于这个算法的流程也是比较好理解:
1.首先给权值覆上随机初值;
2.在训练集中随机选择训练组;
3.按照当前计算模型进行计算输出值;
4.将error反向传播,逐步调整计算模型中的权值;
5.判断MSE是否满足条件,如果不满足继续步骤2;如果满足就跳出算法。
二、算法实现
在这里提供这个算法的实现代码:
struct TrainningSet
{
double inputs[NUM_INPUTS];
double outputs[NUM_OUTPUTS];
}TrainningSet;
TrainningSet tests[NUM_TESTS];
double sigmoid(double val)
{
return ( 1.0 /(1.0 + exp(-val)) );
}
double sigmoid_d(double val)
{
return val*(1.0 - val);
}
//
void calculate_output()
{
for (int i = 0 ; i< NUM_HIDDENS; ++i)
{
hiddens[i]= 0.0;
for(int j = 0 ; j< NUM_HIDDENS ; ++j)
{
hiddens[i]+= inputs[j] * w_h_i[i][j];
}
hiddens[i]= sigmoid(hiddens[i]);
}
for (int i = 0 ; i< NUM_OUTPUTS ; ++i)
{
outputs[i]= 0.0;
for(int j = 0 ; j< NUM_HIDDENS ; ++j)
{
outputs[i]+= hiddens[j] * w_o_h[i][j];
}
outputs[i]= sigmoid(outputs[i]);
}
}
void backpropagate_error(int test)
{
for (int i = 0 ; i< NUM_OUTPUTS ; ++i)
{
for (int j = 0 ; j< NUM_HIDDENS ; ++j)
{
w_o_h[i][j]= w_o_h[i][j] -ALPHA * (tests[test].outputs[i] - outputs[i]) *sigmoid_d(outputs[i]) * hiddens[j];
}
}
//
for (int i = 0 ; i< NUM_HIDDENS ; ++i)
{
for (int j = 0 ; j< NUM_INPUTS ; ++j)
{
w_h_i[i][j]= w_h_i[i][j] -ALPHA * (tests[test].hiddens[i] - hiddens[i]) *sigmoid_d(hiddens[i]) * inputs[j];
}
}
}
三、总结
由于笔者不是专门研究人工智能方面,所以在写这些文章的时候,肯定会有一些错误,也请谅解,上面介绍中有什么错误或者不当地方,敬请指出,不甚欢迎。
如果有兴趣的可以留言,一起交流一下算法学习的心得。
声明:本文章是笔者整理资料所得原创文章,如转载需注明出处,谢谢。