题目描述
koala 得到了一串由 n个山楂构成的冰糖葫芦,但是他只想要一串由奇数个山楂构成的冰糖葫芦。所以他决定拆分这个冰糖葫芦。但是众所周知,冰糖葫芦被拆分之后不同部分是无法再次拼接的(也就是说必须保证拆出后的糖葫芦串上相连接的糖葫芦在原有的糖葫芦串上本身就是连接在一起的)。
koala 根据每个山楂的成色赋予了它们权值 ai。而一串冰糖葫芦的美味程度的权值为这一串所包含的每一个山楂的权值和。但是 koala 不仅仅会保留最美味的一串,每一串山楂数量为奇数的冰糖葫芦都有机会被保留。
如当 n=4,时可能被保留的串有 {a1} , {a2} , {a3}, {a4} , {a1,a2,a3} , {a2,a3,a4} ,共6个。
现在 koala 想知道所有可能被保留的冰糖葫芦的美味程度的总权值和。
输入格式:
第一行,一个整数 n,代表了冰糖葫芦包含的山楂数量。(1≤n≤10000)
第二行,n 个整数 a1 ... an,代表每个山楂的权值。(1≤ai≤1000)
输出格式:
一个整数,代表所有有可能被保留的冰糖葫芦的美味程度的总权值和。
代码实现:
第一种采用前缀和思想,但如果数据再大会导致超时,所以不推荐
#include <iostream>
int a[10005];
using namespace std;
int main() {
int n;
cin>>n;
for (int i=1;i<=n;i++) {
cin>>a[i];
a[i]+=a[i-1];
}
long long ans=0;
for (int i=1;i<=n;i++) {
for (int j=i;j<=n;j+=2) {
ans+=(a[j]-a[i-1]);
}
}
cout<<ans<<endl;
return 0;
}
第二种采用计数器方法,如果数据再大一点也不会造成超时
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int MAX=10010;
int main()
{
ll n,ans=0,t;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>t;
if(i%2!=n%2)
ans+=t*((n-i)/2+1)*i;
else
{
ans+=t*((n-i)/2+1)*((i+1)/2);
ans+=t*(n-i)/2*(i/2);
}
}
cout<<ans<<endl;
return 0;
}
本体如果比赛时并未想到计数器方法可以采用前缀和进行尝试,但要在进行时间复杂度计算后再进行使用后。