糖葫芦(齐大第十一届校赛)

这篇博客介绍了如何解决一个关于冰糖葫芦的问题,即如何在保持山楂数量为奇数的情况下,求解所有可能保留的冰糖葫芦组合的权值和。文章提到了两种解决方案:一种是利用前缀和思想,但可能会导致超时;另一种是采用计数器方法,这种方法在数据较大时仍能保证效率。博客提供了具体的代码实现,展示了如何计算所有可能组合的权值总和。
摘要由CSDN通过智能技术生成

题目描述

koala 得到了一串由 n个山楂构成的冰糖葫芦,但是他只想要一串由奇数个山楂构成的冰糖葫芦。所以他决定拆分这个冰糖葫芦。但是众所周知,冰糖葫芦被拆分之后不同部分是无法再次拼接的(也就是说必须保证拆出后的糖葫芦串上相连接的糖葫芦在原有的糖葫芦串上本身就是连接在一起的)。
koala 根据每个山楂的成色赋予了它们权值 ai。而一串冰糖葫芦的美味程度的权值为这一串所包含的每一个山楂的权值和。但是 koala 不仅仅会保留最美味的一串,每一串山楂数量为奇数的冰糖葫芦都有机会被保留。
如当 n=4,时可能被保留的串有 {a1} , {a2} , {a3}, {a4} , {a1,a2,a3} , {a2,a3,a4} ,共6个。
现在 koala 想知道所有可能被保留的冰糖葫芦的美味程度的总权值和。

输入格式:

第一行,一个整数 n,代表了冰糖葫芦包含的山楂数量。(1≤n≤10000)
第二行,n 个整数 a1 ... an,代表每个山楂的权值。(1≤ai≤1000)

输出格式:

一个整数,代表所有有可能被保留的冰糖葫芦的美味程度的总权值和。

代码实现:

第一种采用前缀和思想,但如果数据再大会导致超时,所以不推荐

#include <iostream>
int a[10005];
using namespace std;
int main() {
	int n;
	cin>>n;
	for (int i=1;i<=n;i++) {
		cin>>a[i];
		a[i]+=a[i-1];
	}
	long long ans=0;
	for (int i=1;i<=n;i++) {
		for (int j=i;j<=n;j+=2) {
			ans+=(a[j]-a[i-1]);
		}
	}
	cout<<ans<<endl;
	return 0;
}

第二种采用计数器方法,如果数据再大一点也不会造成超时

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int MAX=10010;
int main()
{
	ll n,ans=0,t;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>t;
		if(i%2!=n%2)
			ans+=t*((n-i)/2+1)*i;
		else
		{
			ans+=t*((n-i)/2+1)*((i+1)/2);
			ans+=t*(n-i)/2*(i/2);
		}
	}
	cout<<ans<<endl;
	return 0;
} 

本体如果比赛时并未想到计数器方法可以采用前缀和进行尝试,但要在进行时间复杂度计算后再进行使用后。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值