题目:1738. 找出第 K 大的异或坐标值
难度: 中等
题目:
给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。
矩阵中坐标 (a, b) 的 值 可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j](下标从 0 开始计数)执行异或运算得到。
请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。
示例1
输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。
示例2
输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。
示例3
输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。
示例4
输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 1000
0 <= matrix[i][j] <= 106
1 <= k <= m * n
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-kth-largest-xor-coordinate-value/
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
首先,需要理解题目的意思:需要我们求所有可能的(a, b)异或和中第k大的值。(a, b)异或和可以理解为,a+1行和b+1行范围内的所有值的异或和。如下图,求(1, 1)异或和就是求解1、2、4、5四个元素的异或。
对于异或和的问题,根据前几次的异或和问题的解法,可以联想到前缀和来求解,而很明显该题就是二维前缀和的问题。所以我们需要两次遍历,然后求解所有可能的前缀和,之后对数组进行排序,就能够得到第k大的异或和了,而关键就在于二维前缀和的求解。
设前i、j元素的前缀和为xors[i][j]。如上图,比如我们需要找到范围(1, 2)的异或和,即6所在位置。根据黑线的划分,将前缀和的求解分为三部分:6、黑线分割的部分、黄线分割的部分。但是,黑线和黄线分割部分有重合,也就是说我们需要去掉重合的部分,因为重合的部分计算了两次。这很像数学题中的求面积问题,我们需要去掉重合部分。但是面积可以直接减去,但这个是异或和,该如何求解?
其实很简单,这就需要利用异或的性质:自身 ^ 自身 = 0,0 ^ 自身 = 自身。设重合部分为S,那么其实我们计算了两次S:S ^ S,问题就变成了如何将S ^ S变成S的问题了。根据性质,再异或S自身,S ^ S ^ S = 0 ^ S = S。
当然,如果没有想到这一层,也可以通过两个前缀异或和数组,一个记录前i行j-1列,另一个仅仅计算j列元素,也可以完成。其实一开始我也是通过两个前缀异或和求解,然后观察发现两个可以合并为一个,就成功化简了。
解题代码
class Solution {
public:
int kthLargestValue(vector<vector<int>>& matrix, int k) {
int m = matrix.size();
int n = matrix[0].size();
vector<vector<int>> xors(m + 1, vector<int>(n + 1));
//vector<vector<int>> yors(m + 1, vector<int>(n + 1));
vector<int> arr;
for (int i = 1; i < m + 1; i++)
{
for (int j = 1; j < n + 1; j++)
{
//yors[i][j] = matrix[i - 1][j - 1] ^ yors[i - 1][j];
//xors[i][j] = yors[i][j] ^ xors[i][j - 1];
xors[i][j] = matrix[i - 1][j - 1] ^ xors[i - 1][j] ^ xors[i][j - 1] ^ xors[i - 1][j - 1];
arr.push_back(xors[i][j]);
}
}
/*
for (int i = 1; i < m + 1; i++)
{
for (int j = 1; j < n + 1; j++)
{
cout << xors[i][j] << " ";
}
cout << endl;
}
*/
//sort(arr.begin(), arr.end(), greater<int>());//逆序
sort(arr.begin(), arr.end());
int size = arr.size();
return arr[size - k];
}
};