littlemichelle
码龄7年
  • 536,894
    被访问
  • 532
    原创
  • 3,979
    排名
  • 497
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2015-10-09
博客简介:

littlemichelle

查看详细资料
  • 5
    领奖
    总分 1,834 当月 82
个人成就
  • 获得334次点赞
  • 内容获得143次评论
  • 获得1,404次收藏
创作历程
  • 6篇
    2022年
  • 107篇
    2021年
  • 118篇
    2020年
  • 216篇
    2019年
  • 94篇
    2018年
成就勋章
TA的专栏
  • 数据结构
    26篇
  • Hive & Sql & Spark
    50篇
  • 推荐系统
    50篇
  • 机器学习
    57篇
  • leetcode解题记录
    148篇
  • 深度学习
    47篇
  • Tensorflow & Pytorch
    34篇
  • 编程语言
    82篇
  • Linux
    17篇
  • 工程实践
    19篇
  • 计算机视觉
    39篇
  • 其他
    17篇
兴趣领域 设置
  • 人工智能
    深度学习
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【深度学习】两个特征在经过L2归一化之后的矩阵

两个特征在经过L2归一化之后的矩阵的内积=它们的余弦相似度余弦相似度与两个特征在经过L2归一化之后的矩阵内积等价_Might_Guy.的博客-CSDN博客_余弦相似度归一化ReferenceL2范数归一化概念和优势余弦距离比对对的几种写法 cos距离pytorch计算两个特征的余弦相似度https://blog.csdn.net/weixin_46474546/article/details/121121958L2范数归一化概念和优势 余弦距离比对对的几种写法 cos距离 pytorch计算
原创
发布博客 2022.04.01 ·
599 阅读 ·
0 点赞 ·
0 评论

【推荐系统】特征处理

CTR平滑​​​​​​CTR问题的贝叶斯平滑转化率 - it610.com点击率贝叶斯平滑该用那部分数据进行计算? - 知乎
原创
发布博客 2022.02.12 ·
454 阅读 ·
1 点赞 ·
0 评论

【推荐系统】协同过滤

协同过滤核心:人以群分、物以类聚。
原创
发布博客 2022.01.21 ·
196 阅读 ·
0 点赞 ·
0 评论

【深度学习】softmax with temperture

无
原创
发布博客 2022.01.21 ·
2551 阅读 ·
0 点赞 ·
0 评论

【深度学习】transformer中softmax为什么要scaled

论文中解释是:向量的点积结果会很大,将softmax函数push到梯度很小的区域,scaled会缓解这种现象。怎么理解将sotfmax函数push到梯度很小区域?还有为什么scaled是维度的根号,不是其他的数?答案:q,k向量点积后的结果数量级变大,经历过softmax函数的归一化之后,后续反向传播的过程中梯度会很小,造成梯度消失。进行scaled能够缓解这种情况。Multi-head Attention为什么要做scaled - 卷王李狗蛋的文章 - 知乎目录为什么会梯度消失的原因?
原创
发布博客 2022.01.20 ·
761 阅读 ·
1 点赞 ·
0 评论

【推荐系统】ESMM实践应用

无
原创
发布博客 2022.01.12 ·
234 阅读 ·
1 点赞 ·
0 评论

【推荐系统】Faiss index选择

Faiss提供了针对不同场景下应用对Index的封装类,这里我们针对Index基类进行说明。我所关心的pointsIndexIVFPQ、IndexIVFFlat 支持Gpu; IndexFlatIP(内积距离) 支持Gpu; CPU支持并发搜索(batch search),GPU不支持、Fiass - 常见问题总结 - 一小撮人的文章 - 知乎 https://zhuanlan.zhihu.com/p/107241260index选择考虑因素:候选向量的数量级、index所占.
原创
发布博客 2021.12.17 ·
296 阅读 ·
2 点赞 ·
0 评论

【深度学习】Layer Normalization

【深度学习】Batch Normalization_littlemichelle-CSDN博客与BN的原理一致,只是归一化的对象不同。目录NormalizationBatch NormalizationBatch Normalization的优势、劣势Layer NormalizationCNN为什么要用BN, RNN为何要用layer Norm? - 子不语的回答 - 知乎Normalization不管是Batch Normalization还是Layer Norm
原创
发布博客 2021.12.06 ·
502 阅读 ·
0 点赞 ·
0 评论

【推荐系统】GBDT总结篇

一、理论回顾前期理论铺垫:【机器学习】GBDT梯度提升树_littlemichelle-CSDN博客二、回归vs. 分类问题GBDT用回归树来处理分类问题例子GBDT用于分类问题 - 1直在路上1 - 博客园机器学习算法GBDT的面试要点总结-上篇 - ModifyBlog - 博客园三、QAQ1、GBDT分类问题中还有残差的概念吗?A1、GBDT处理回归or分类问题都使用CART回归树,CART回归树的loss是平方差损失函数;所以GBDT不论处...
原创
发布博客 2021.12.02 ·
702 阅读 ·
1 点赞 ·
0 评论

【数据结构】匈牙利算法

参考代码:力扣算法学习笔记(5):匈牙利算法 - Pecco的文章 - 知乎二分图匹配之匈牙利算法(超级详细,看完不懂都难)二分图最大匹配:匈牙利算法的python实现 - JamesPei - 博客园KM算法 · Issue #34 · nhjcacmt/acm · GitHub...
原创
发布博客 2021.11.19 ·
38 阅读 ·
1 点赞 ·
0 评论

【深度学习】NLP之Bert(2)QA

BERT是一个多任务模型,它的任务是由两个自监督任务组成,即MLM和NSP。紫色是没找到答案的,黄色是重点关注的。BERT0、为什么要随机Mask?在BERT的实验中,15%的WordPiece Token会被随机Mask掉。在训练模型时,一个句子会被多次喂到模型中用于参数学习,但是Google并没有在每次都mask掉这些单词,而是在确定要Mask掉的单词之后,80%的时候会直接替换为[Mask],10%的时候将其替换为其它任意单词,10%的时候会保留原始Token。80%:my d
原创
发布博客 2021.11.18 ·
789 阅读 ·
1 点赞 ·
0 评论

【Spark】底层执行任务逻辑

持续更新,直到写出每个环节的关系。【spark广播】一、使用广播变量的好处1、Driver每次分发任务的时候会把task和计算逻辑的变量发送给Executor。不使用广播变量,在每个Executor中有多少个task就有多少个Driver端变量副本。这样会导致消耗大量的内存导致严重的后果。2、使用广播变量的好处,不需要每个task带上一份变量副本,而是变成每个节点的executor才一份副本。这样的话, 就可以让变量产生的副本大大减少;二、广播变量的原理广播变量,初始的时候,就在Dr
原创
发布博客 2021.11.15 ·
1267 阅读 ·
1 点赞 ·
0 评论

【Spark】spark dataframe与pandas dataframe转换

spark dataframe与pandas dataframe
原创
发布博客 2021.10.13 ·
591 阅读 ·
0 点赞 ·
0 评论

【pandas】get_dummies将类别特征转为onehot

今天又学了一招,pandas将str类型的类别特征,转为one-hot。注意一定要是str类型,int类型报错。pandas.get_dummies 的用法_数据分析-CSDN博客get_dummies 是利用pandas实现one hot encode的方式。详细参数请查看官方文档官方文档在这里pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=Fals
原创
发布博客 2021.10.13 ·
113 阅读 ·
0 点赞 ·
0 评论

【Pytorch】BUG RuntimeError: Found dtype Long but expected Float

说明此时需要float型数据,但识别到long型数据,此时需要对入参和出参做一下类型转换output=output.to(torch.float32)target=target.to(torch.float32)举例output =net(input)target = variable(t.arange(0,10))#the pointoutput=output.to(torch.float32)target=target.to(torch.float32)criterion
原创
发布博客 2021.10.13 ·
3318 阅读 ·
3 点赞 ·
0 评论

【Spark】mapreduce任务参数优化

1、GC首先确定是map阶段gc,还是reduce阶段gc。reduce阶段gc,则set mapreduce.reduce.cpu.vcores=当前值*2;set mapreduce.reduce.memory.mb=当前值*2;set mapreduce.reduce.java.opts=当前值*2;map阶段gc,则mapreduce.map.cpu.vcores=当前值*2;mapreduce.map.memory.mb=当前值*2;mapreduce.map.ja
原创
发布博客 2021.09.22 ·
307 阅读 ·
0 点赞 ·
0 评论

【leetcode总结】解析回溯法系列:)

一、排列问题46.全排列(middle)给定一个不含重复数字的数组nums,返回其所有可能的全排列。你可以按任意顺序返回答案输入:nums = [1,2,3]输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]https://leetcode-cn.com/problems/permutations/solution/dai-ma-sui-xiang-lu-dai-ni-xue-tou-hui-s-mfrp/这里和...
原创
发布博客 2021.08.22 ·
89 阅读 ·
0 点赞 ·
0 评论

【leetcode总结】解析dp股票系列:)

121. 买卖股票的最佳时机(easy)122. 买卖股票的最佳时机 II(easy)309.最佳买卖股票时机含冷冻期(middle)714.买卖股票的最佳时机含手续费(middle)901.股票价格跨度(middle)fucking-algorithm/动态规划系列/团灭股票问题.mdleetcode 买卖股票合集 - 木吉子的文章 - 知乎leetcode股票买卖题目汇总...
原创
发布博客 2021.08.19 ·
64 阅读 ·
0 点赞 ·
0 评论

【Hive】修改 table、column

目录一、表二、列三、分区一、表1、重命名表重命名表的语句如下:ALTER TABLE table_name RENAME TO new_table_name2、修改表属性:ALTER TABLE table_name SET TBLPROPERTIES (property_name = property_value, property_name = property_value,... )3、修改表注释ALTER TABLE table_name SET TBL
原创
发布博客 2021.08.16 ·
298 阅读 ·
0 点赞 ·
0 评论

【Python】关于and和or

python的 and 操作如果最后结果为真,返回最后一个表达式的值,or 操作如果结果为真,返回第一个结果为真的表达式的值。剑指offer 面试题64. 求 1 + 2 + … + n(逻辑符短路,清晰图解)class Solution: def sumNums(self, n: int) -> int: return n and (n + self.sumNums(n-1))...
原创
发布博客 2021.07.19 ·
43 阅读 ·
0 点赞 ·
0 评论
加载更多