pytorch
文章平均质量分 66
Arya算法笔记
这个作者很懒,什么都没留下…
展开
-
调试parser.parse_args 出现systemexit 2解决方案
在使用parser过程中经常遇到parser.parse_args 出现systemexit 2具体如下:parser = argparse.ArgumentParser()# model argumentsparser.add_argument('--img_size', type=int, default=256, help='Image resolution')args = parser.parse_args() vscode原创 2022-04-17 18:32:21 · 6139 阅读 · 9 评论 -
Pytorch多GPU和Sync BatchNorm代码
由于复现spade的过程中遇到了一些GPU的问题,所以决定好好理解一下DPL代码问题终端显示暂行不动,并没有报错。GPU没有加载进程,同时CPU也没有动。考虑可能是DPL的问题。由于代码中使用了Sync BatchNorm,考虑到可能是DPL的问题。nn.DataParallel在forward阶段,当前GPU上的module会被复制到其他GPU上,输入数据则会被切分,分别传到不同的GPU上进行计算;在backward阶段,每个GPU上的梯度会被求和并传回当前GPU上,并更新参数。也就是复制mo原创 2021-06-17 09:55:53 · 2082 阅读 · 1 评论 -
pytorch 提高gpu利用率
pytorch跑Unet代码,gpu利用率在0%-20%闪现,主要问题是GPU一直在等cpu处理的数据传输过去。利用top查看cup的利用率也是从0省道100%且显然cup的线程并不多,能处理出的数据也不多。在一般的程序中,除了加载从dataloader中数据和model的运行需要gpu,其余更多的dataset、dataloader、loss的计算和日志的输出很多部分都需要cup的计算。所以,可以提升的方面包括 从class dataset的优化、dataloader的优化和其他部分代码的优化。当然代码原创 2021-04-08 10:36:11 · 6749 阅读 · 1 评论 -
Unet语义分割dice提升
初次复现Medical Image Synthesis for Data Augmentation and Anonymization using Generative Adversarial Networks文章,但是并没有用pix2pix的分割模型,而是使用Unet分割利用pix2pix合成的brats数据集。但是发现原本的Unet模型bceloss效果并不好,val的dice值很低。就开始踏上了炼丹之路。论文地址:https://arxiv.org/abs/1807.102251.学习率找到最原创 2021-04-08 08:39:19 · 5192 阅读 · 0 评论 -
pytorch—多GPU使用
文章目录单机多卡显卡编号调用全部显卡调用指定编号显卡1. os.environ[“CUDA_VISIBLE_DEVICES”]详解2. torch.cuda主要函数3.关于unet分割一段指定gpu代码多机多卡单机多卡单机多卡情况一般有,单机双卡或者八卡比较常见。一般通过nvidia-smi查看gpu的规格和使用情况。gpu会被编上序号:[0,1,2,3,4,5,6,7]等。显卡编号在默认情况下,标号为0的显卡为主卡增加其他显卡为主卡语句:os.environ["CUDA_VISIBLE_D原创 2021-03-31 21:04:37 · 9044 阅读 · 2 评论