医学图像知识
文章平均质量分 76
以医学背景为主的影像成像、影像预处理以及相应的评价指标
Arya算法笔记
这个作者很懒,什么都没留下…
展开
-
医学影像知识(四):三维医学影像分割任务常见后处理
对于3D分割任务,后处理的目标主要是减少假阳性。使用形态学操作、阈值处理和连通区域分析可以有效地提高分割的准确性。以下是这三种方法在3D分割任务中的具体应用说明:例如针对肺动脉风格任务,在几何上,肺内血管与其他正常和异常肺结构相比,呈凸圆柱状,在CT图像上呈高密度区。虽然气道也是为肺部通气的管状结构,但气道管腔在CT图像上表现为低密度区域,并具有凹形描述。原创 2023-12-27 20:18:51 · 1401 阅读 · 0 评论 -
医学影像知识(三):三维医学影像各向同性与各向异性的对比
需要注意的是,当水平方向和纵向的间距差异较大时,通过插值生成的中间层面可能不包含真实的图像信息。为此,医学影像的预处理阶段通常包括一步关键的图像插值过程,以调整像素间距,实现xyz三个方向的像素间距一致。通常情况下,CT图像在x和y方向(即水平层面)的像素间距较小,分辨率较高,大约为0.5mm。而在z方向(即纵向,从头到脚的方向)的像素间距,也就是层间距,通常较大,约在1到3mm之间。高数据要求: 要获得高质量的各向同性图像,需要更高的扫描分辨率,可能导致更长的扫描时间和更大的数据量。原创 2023-12-27 16:06:19 · 1932 阅读 · 3 评论 -
AI算法相关就业向学习(算法、部署、加速)
整个文章内容是在微信公众号进行的笔记总结和个人感悟本人本科通信,研究生是cv医学影像方向,初识算法模型相关还是在本科参加数学建模,那个时候用matlab实现最简单的机器学习方法解决的问题,后来研究生开始了解深度学习和CV相关的知识和代码,整个学习过程也不是很系统,很多问题也是一知半解,到现在做算法工作,发现AI整个方向有太多不我了解的,某天看到了老潘的文章,首先普及了我很多基础知识和词条,也能很清晰的指清楚学习的方向。原创 2023-12-22 18:22:43 · 831 阅读 · 0 评论 -
医学影像知识(二):医学影像常见数据预处理方式
医学图像数据分析是研究生物标记物并验证其准确性的过程,就像警察追踪嫌疑人一样,根据特征来识别目标并确认身份。这过程包括筛选特征以及验证结论的正确性。医学图像涵盖了病理图像、影像图像(如X光、CT扫描、MRI图像)和检验图像等。我们将重点介绍对影像图像的数据分析。比如,CT图像是由不同灰度构成的,医生通过观察图像上的异常特征来做出疾病诊断,比如肺癌病变通常呈现为肿块,具有特定的边缘特征。不过,这些特征通常是肉眼观察得出的。我们可以利用工具来提取更多特征,因为提取的特征越多,我们获得的判断证据也越充分。原创 2023-11-07 16:16:13 · 4431 阅读 · 1 评论 -
医学影像知识(一):DICOM影像文件参数:窗宽窗位
较大的窗宽意味着更宽广的灰度范围,可以显示更多的细节,但可能在图像中丧失一些对比度。较小的窗宽则会强调图像中的细微灰度变化,但在图像的范围内可能丢失了一些细节。窗宽窗位是医学影像处理中不可或缺的概念,通过调整灰度范围和中心,可以提高图像的对比度和清晰度。SOP实例UID(SOP Instance UID): 唯一标识DICOM文件中的具体图像实例,每个图像实例都有一个独特的UID。采集设备信息(Equipment Information): 描述了使用的影像设备的信息,包括制造商、型号、软件版本等。原创 2023-08-24 10:00:54 · 2724 阅读 · 7 评论 -
关于多分类的评价指标acc、pre、recall、f1
1.准确率ACC:overall:准确率是分类正确的样本占总样本个数的比例,即其中, ncorrect为被正确分类的样本个数, ntotal为总样本个数。结合上面的混淆矩阵,公式还可以这样写:y_pred = [0, 2, 1, 3]y_true = [0, 1, 2, 3]print(accuracy_score(y_true, y_pred)) # 0.5print(accuracy_score(y_true, y_pred, normalize=False)) # 2原创 2023-08-21 22:55:53 · 2272 阅读 · 0 评论 -
肺炎多分类任务BASE
针对backbone的分类网络具有Resnet系列、Densenet系列、Inception系列,常借助辅助手段(FPN、attention、决策树、lasso等)提高模型性能其中Resnet50v2 和 covidnet在四分类中取得不错的效果。1.数据集2.评价指标基于分类任务的常见评价指标:召回率(recall)、精准率(precision)、特异性(specificity)、准确率(accuracy)、FI-score、ROC曲线和AUC指标。3.模型Deeplearning enab原创 2023-08-21 22:54:30 · 208 阅读 · 0 评论 -
Attention总结(自用,不定期更新)
Channel AttentionSqueeze-and-Excitation NetworksSENet的高效率主要来自于2个模块:(1)squeeze:global pool将w*h压缩到了1减少了后续操作中对spatial维度的计算和参数。(2)excitation:通道维度先降再升如果直接用一个c->c的FC,那么参数为c2;如果先降再升用两个FC,那么参数为(c2)/r+(c**2)/r,原文中r=16,那么参数就变为了一个FC的1/8.(为什么r=16???)Selec原创 2023-08-21 22:53:40 · 67 阅读 · 0 评论 -
医学可用的数据增强算法
常用医学数据增强算法传统数据增强算法mix up数据增强Samplepairing数据增强是对训练样本的各种有章法的变换,这就使得模型能够学到图像更本质的特征,增强模型对样本细微变换的适应性,减弱对变化的敏感。传统数据增强算法通过对图片进行针对图像整体的物理几何变换:翻转、平移、放大、缩小等。还有针对图像像素增加噪声的增强方法:高斯噪声、椒盐噪声等。这些传统数据增强算法作用有限,尤其是针对复杂模型,收效甚微。mix up数据增强该算法由Facebook人工智能研究院于2018年提出,发表在《m原创 2021-07-01 16:57:53 · 2468 阅读 · 2 评论 -
Unet语义分割dice提升
初次复现Medical Image Synthesis for Data Augmentation and Anonymization using Generative Adversarial Networks文章,但是并没有用pix2pix的分割模型,而是使用Unet分割利用pix2pix合成的brats数据集。但是发现原本的Unet模型bceloss效果并不好,val的dice值很低。就开始踏上了炼丹之路。论文地址:https://arxiv.org/abs/1807.102251.学习率找到最原创 2021-04-08 08:39:19 · 5192 阅读 · 0 评论 -
残差网络的在医学图像处理的应用
残差网络(Residual Networks, ResNets)什么是残差(residual)?实际观察值与估计值之间的差。什么是残差网络(Residual Networks,ResNets)?① Deeper is better?在训练集上,并不一定这样。随着层数增多,会产生退化问题。随着网络越来越深,训练变得原来越难,网络的优化变得越来越难。理论上,越深的网络,效果应该更好;但实际上,由于训练难度,过深的网络会产生退化问题,效果反而不如相对较浅的网络。而残差网络就可以解决这个问题的,残差转载 2020-09-09 13:14:33 · 992 阅读 · 0 评论 -
Unet在医学图像分割表现好原因浅析
根据UNet的结构,它能够结合底层和高层的信息。底层(深层)信息:经过多次下采样后的低分辨率信息。能够提供分割目标在整个图像中上下文语义信息,可理解为反应目标和它的环境之间关系的特征。这个特征有助于物体的类别判断(所以分类问题通常只需要低分辨率/深层信息,不涉及多尺度融合)高层(浅层)信息:UNet共进行了4次上采样,并在同一个stage使用了skip connection,而不是直接在高级语义特征上进行监督和loss反传,这样就保证了最后恢复出来的特征图融合了更多的low-level的feature,转载 2020-09-09 09:19:14 · 2240 阅读 · 0 评论 -
读《中科院徐波:医学人工智能技术发展现状和趋势》
徐波教授是中国科学院自动化研究所所长,已经率领全所完成了“从自动化向智能化转变”的全过程,建立了三个国家级平台和九个国家级实验室和研究中心,成为世界上少有的几个国家级人工智能引擎和发动机之一,引领中国人工智能的发展方向。徐所长的主要观点:1、医学人工智能是人工智能超级应用场景(患者数量、医生医院规模、临床数据、可以发挥效益痛点无数等);2、经过人工智能与医学两大领域几年碰撞和磨合,医学人工智能进入了比较理性和务实的状态;3、医学人工智能一定以医生为主体,AI技术和AI系统为...转载 2020-08-21 00:13:50 · 606 阅读 · 0 评论 -
U-net论文详解
U-net论文:《U-Net: Convolutional Networks for Biomedical Image Segmentation》提交日期:2015年5月论文链接:https://arxiv.org/abs/1505.04597v1U-net 是基于FCN的一个语义分割网络,适合用来做医学图像的分割。U-Net是比较早的使用全卷积网络进行语义分割的算法之一,论文中使用包含能够捕获上下文语义的压缩路径和可实现精确定位的扩展路径的对称U形结构。特点:从很少的图像端到端地进行训练,且优于转载 2020-08-11 17:07:25 · 1501 阅读 · 0 评论 -
FCN论文详解
1.端到端学习?传统的图像识别问题:将过程分解为预处理,特征提取和选择,分类器设计等若干步骤。优点:把复杂的问题分解为简单、可控且清晰的若干小的子问题。缺点:尽管可以在子问题上得到最优解,但子问题上的最优解并不意味着就能得到全局问题的最后解。深度学习图像识别(提供了一种端到端的学习范式):整个学习的流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始数据到期望输出的映射。对深度模型而言,其输入数据是未经人为加工的原始样本形式,后续则是堆叠在输入层上的众多操作层,这些操作层整体可以转载 2020-08-09 18:51:47 · 2517 阅读 · 0 评论 -
全连接层替换为卷积层
卷积和全连接卷积层的特点:稀疏连接,权值共享全连接层的特点:每个神经元都和上一层的所有神经元相连接两者的共同点:都是由上一层的输出与参数矩阵相乘从而得到下一层的输入所以我们得以得到结论,全连接层和卷积层实际上是可以相互转换的。举个例子:最后一个卷积层的输出为 77512,即每个 feature map 的大小为 77,共有 512 个 feature map,然后通过一个全连接层得到了 11*4096 的输出,如下图所示:全连接到卷积将全连接层转换为卷积层的关键就在卷积核参数的设置上,仍然转载 2020-08-09 16:22:28 · 2478 阅读 · 0 评论 -
CNN的发展史LeNet、Alexnet 、VGG、GoogleNet、ResNet简介
作者:我爱机器学习链接:https://zhuanlan.zhihu.com/p/22094600来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。CNN的发展史上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服。当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM转载 2020-07-30 12:12:35 · 2812 阅读 · 0 评论 -
端到端学习
传统的图像识别问题:将过程分解为预处理,特征提取和选择,分类器设计等若干步骤。优点:把复杂的问题分解为简单、可控且清晰的若干小的子问题。缺点:尽管可以在子问题上得到最优解,但子问题上的最优解并不意味着就能得到全局问题的最后解。深度学习图像识别(提供了一种端到端的学习范式):整个学习的流程并不进行人为的子问题划分,而是完全交给深度学习模型直接学习从原始数据到期望输出的映射。对深度模型而言,其输入数据是未经人为加工的原始样本形式,后续则是堆叠在输入层上的众多操作层,这些操作层整体可以看作一个复杂的函原创 2020-07-30 12:02:09 · 204 阅读 · 0 评论