通过@伪列,计算在同一个mysql表中同一个用户,第一行时间与第二行时间比较,第二行时间与第三行时间比较……的sql语句,及补充mysql伪列和时间处理函数知识

需求

根据uid分组,比较用户的登陆时长,并选出第一次登陆的时间,最后一次登陆的时间,及登陆的次数,两次登陆间隔不操过30分钟的,算一次登陆,写出对应的SQL语句……

表结构

CREATE TABLE `t_ods` (
  `id` bigint(11) NOT NULL,
  `uid` int(11) DEFAULT NULL,
  `login_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

做数据脚本

DELIMITER ;
CREATE PROCEDURE test_insert() 
BEGIN 
DECLARE y BIGINT DEFAULT 138;
DECLARE h BIGINT DEFAULT 13;
DECLARE m BIGINT DEFAULT 50;
WHILE y<1000
DO
set h = RAND() * 500%24;
set m = RAND() * 10000%60;
INSERT INTO t_ods(`id`, `uid`, `login_time`) 
VALUES (y, FLOOR( 1 + RAND() * 5), CONCAT('2019-',CAST(y%12 AS CHAR),'-07 ',CAST(h AS CHAR),':',CAST(m AS CHAR),':',CAST(y%60 AS CHAR)) );

SET y=y+1; 
END WHILE ; 
COMMIT; 
END;
CALL test_insert();
DROP PROCEDURE IF EXISTS test_insert;

生成的数据有862

解题

关键点是,两次登陆间隔不操过30分钟的,需要计算在同一个mysql表中第一个时间与第二个时间比较,第二个时间与第三个时间比较……依次类推……

首先查看有多少UID

SELECT UID from t_ods group by uid

选择其中一个UID,进行升序排列结果集

select id ,uid,login_time from t_ods where uid = 3 and login_time like '2019-10-0%' order by login_time

计算在同一个mysql表中第一个时间与第二个时间比较,第二个时间与第三个时间比较

SELECT
b.id,
b.uid,
b.curr,
b.pre,
TIMESTAMPDIFF(MINUTE,b.pre, b.curr) AS diff
FROM
(
SELECT
a.`id` AS id,
a.`uid` AS uid,
a.`login_time` AS curr,
@a.login_time AS pre,
@a.login_time:= a.login_time
FROM t_ods a,(SELECT @a.login_time:=0)r  where uid = 3 and login_time like '2019-10-07%'  order by login_time asc
)b

这样就实现了同一个uid,在一张表,不同时间段的逐级差值,然后,再根据diff ,进行判断是否大于30,即可实现需求功能 !

总结

用到了一下sql知识:

伪列为分组排名

Mysql中因为没有ROWNUM伪列、那么想要排名、故要搞出一列伪列、用作排名

SELECT
 (@r :=@r + 1) AS rank
FROM  (SELECT @r := 0) r 
 ;

SELECT
a.`id` AS id,
a.`name` AS NAME,
a.`login_time` AS curr,
@a.login_time AS pre, --上一条记录的login_time值
@a.login_time:= a.login_time AS tmp
FROM stock_store_addinfo a,(SELECT @a.login_time:=0)s
@a.login_time:=a.login_time AS tmp  --将a.login_time值赋到临时临时变量 @a.login_time
SELECT @a.login_time:=0  --选择当前表,上一条记录 a.login_time,默认值为0

时间差函数(TIMESTAMPDIFF、DATEDIFF)

需要用MySQL计算时间差,使用TIMESTAMPDIFF、DATEDIFF,记录一下实验结果

--0
select datediff(now(), now());
--2
select datediff('2015-04-22 23:59:00', '2015-04-20 00:00:00');
--2
select datediff('2015-04-22 00:00:00', '2015-04-20 23:59:00');
--1
select TIMESTAMPDIFF(DAY, '2015-04-20 23:59:00', '2015-04-22 00:00:00');
--2
select TIMESTAMPDIFF(DAY, '2015-04-20 00:00:00', '2015-04-22 00:00:00');
--2
select TIMESTAMPDIFF(DAY, '2015-04-20 00:00:00', '2015-04-22 12:00:00');
--2
select TIMESTAMPDIFF(DAY, '2015-04-20 00:00:00', '2015-04-22 23:59:00');
--71
select TIMESTAMPDIFF(HOUR, '2015-04-20 00:00:00', '2015-04-22 23:00:00');
--4260
select TIMESTAMPDIFF(MINUTE, '2015-04-20 00:00:00', '2015-04-22 23:00:00');

DATETIME类型和Timestamp之间的转换

DATETIME -> Timestamp: 

UNIX_TIMESTAMP(...)

Timestamp -> DATETIME: 

FROM_UNIXTIME(...)

mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(NOW()));
+--------------------------------------+
| FROM_UNIXTIME(UNIX_TIMESTAMP(NOW())) |
+--------------------------------------+
| 2021-03-17 16:27:41                  |
+--------------------------------------+

细品mysql count和sum的区别

CREATE TABLE `sigterm` ( 
  `name` varchar(20) default NULL, 
  `subject` varchar(20) default NULL, 
  `score` tinyint(4) default NULL 
) ENGINE=MyISAM DEFAULT CHARSET=utf8

insert into sigterm values
('张三','数学',90),
('张三','语文',50),
('张三','地理',40),
('李四','语文',55),
('李四','政治',45),
('王五','政治',30),
('赵六','语文',100),
('赵六','数学',99),
('赵六','品德',98)

sum()函数

sum()函数里面的参数,是列名的时候,是计算列名的值的相加,而不是有值项的总数。

select name,sum(score < 60) ,avg(score)  from sigterm  group by name having sum(score<60) >=2;

里面涉及到sum、avg所以要使用group by ,其中sum(score < 60)是不是很突兀?

select name,(score < 60)  from result

count()函数

count()函数里面的参数,是列名的的时候,那么会计算有值项的次数。字段没有值的项并不会进入计算范围,建议大家使用count(*),而避免使用指定具体的列名

select name ,count((score<60)!=0) as a,avg(score) from result group by name having a >=2; 

这个对score进行进行计算是错误的,count(a)与count(*)都是求行数,只对存在的"列名"的行数求和,总之与group by having不是一对。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿啄debugIT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值