观测数据建模

观测数据

观测数据 / 样本空间覆盖均匀

psm

观测数据建模

因果模型得到什么样的值

base 0/1 gmv

uplift   delat

模型可以得到 confounder 的表征,而 NN 可以支持更个性化的结构。在这里给出两种思路:

  • 思路1: 使用树模型生成的 confounder embedding 作为 NN 模型的特征。
  • 思路2: 使用对抗学习做特征分解。本文的第四部分会详细解释。

RCT&ODB 融合建模

ae47fb18fb9948dc9a93bc127b05c43a.pnga1f5bc91b07a44a5aead8d051a2083c9.png

db20495078293fa86a00959456625be6.png

训练因果模型来估计 Individual Treatment Effects (ITE) 的神经网络模型是一种常见的方法。以下是一些常用的神经网络模型,可以用于估计 ITE,特别是在观测数据上:

  1. DeepIV (Deep Instrumental Variables): DeepIV 是一种使用神经网络进行因果推断的方法,它将 IV 问题建模为神经网络。该方法将工具变量和外生变量作为输入,输出个体效应的估计。这可以用于估计 ITE,尤其在存在内生性问题时。DeepIV 的结构允许对因果关系进行建模,并且可以支持单调性等约束。

  2. Causal Forest with Neural Networks: Causal Forest 是一种基于决策树的方法,它可以结合神经网络来估计 ITE。在 Causal Forest 中,决策树用于划分样本空间,而每个叶子节点上都可以放置神经网络来估计 ITE。这种方法可以充分利用决策树的结构和神经网络的灵活性。

  3. Neural Network Propensity Score Matching: 在估计 ITE 时,可以使用神经网络来估计倾向得分(propensity score),然后进行匹配以得到具有相似倾向得分的样本。这种方法可以通过匹配控制组和干预组来估计 ITE。

  4. Counterfactual Neural Networks: 这是一种直接建模因果效应的方法,它通过训练一个神经网络来估计不同干预下的预期输出。它将干预前后的特征和观测的输出作为输入,输出干预后的预期输出。

  1. TARNET (Transformation-Aware Network): TARNET 是一种基于神经网络的方法,用于估计 ITE。它在处理因果推断问题时,通过将原始特征映射到一个共享的潜在空间,然后在该潜在空间中进行干预效应估计。这种方法允许网络更好地处理观测数据中的干扰和内生性问题。

  2. DRNET (Doubly Robust Network): DRNET 是一种使用神经网络的方法,结合了双重稳健性技术和倾向得分估计。它旨在减小因果估计中的偏差和方差,通过建立双重稳健性损失函数。这种方法可以用于估计 ITE 并提供较好的稳健性。

  3. Causal Forest with Neural Networks: Causal Forest 是一种基于决策树的方法,可以与神经网络结合使用。在 Causal Forest 中,神经网络可以用于估计每个叶子节点的 ITE,从而在具有更强拟合能力的情况下保留决策树的解释性和稳健性。

  4. NEDNet (Neural Estimation of Individual Treatment Effects): NEDNet 是一种用于估计 ITE 的神经网络模型。它通过预测干预前后的输出差异来估计 ITE,同时利用网络结构进行特征选择和噪声过滤。

  5. X-learner and R-learner: 这些是传统的因果推断方法,但也可以与神经网络结合使用。X-learner 使用两个神经网络来估计干预组和控制组的预期输出,然后计算干预效应。R-learner 使用一个神经网络来估计干预前的输出,另一个神经网络来估计干预后的输出,然后计算干预效应。

DML

https://github.com/py-why/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Customer%20Segmentation%20at%20An%20Online%20Media%20Company.ipynb

参考

  1. 因果推断笔记——DR :Doubly Robust学习笔记(二十) - 知乎
  2. 健康险精算师必读系列 | 用观测数据进行因果推断 - 知乎
  3. 基于观测数据的因果发现及因果性学习 - 知乎
  4. AAAI 2023 | 用因果推理做部分可观测强化学习 - 知乎
  5. 闲聊因果效应(4):离线评估 - 知乎
  6. 因果推断笔记——数据科学领域因果推断案例集锦(九) - 知乎
  7. 基于表征学习的因果推断技术在快手的实践 - AIQ
  8. 快手异质性因果效应模型构建及应用 - AIQ
  9. 因果推断笔记——DML :Double Machine Learning案例学习(十六) - 知乎
  10. Double Machine Learning(DML) 原理及其应用 - 知乎
  11. 因果推断与反事实预测——利用DML进行价格弹性计算(二十四) - 知乎
  12. 因果推断--Double Machine Learning(DML) - 知乎
  13. DML: Double/Debiased Machine Learning - 知乎
  14. 因果推断——借微软EconML测试用DML和deepIV进行反事实预测实验(二十五) - 知乎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值