题目描述
2019可以被分解成若干个两两不同的素数,请问不同的分解方案有多少种?
注意:分解方案不考虑顺序,如 2 + 2017 = 2019 和 2017 + 2 = 2019 属于同一种方案。
答案:55965365465060
思路
先用筛法求出质数数组,然后将本题转化成01背包来解,每个质数只可用一次,看其组合相加最终能产生多少个2019。
Code:
#include <iostream>
#include<map>
using namespace std;
typedef long long ll;
const int Max = 1e6 + 5;
int p[Max], b[Max];
int k = 0;
ll dp[Max];
void era(int n)
{
for (int i = 2;i <= n;i++)
{
if (b[i] == 0)
{
p[++k] = i;
for (int j = i;j <= n;j+=i)
{
b[j] = 1;
}
}
}
}
int main()
{
era(2019);
dp[0] = 1;
for (int i = 1;i <= k;i++)
{
for (int j = 2019;j >= 1;j--)
{
if (j - p[i] >= 0 && dp[j - p[i]])dp[j] += dp[j - p[i]];
}
}
cout << dp[2019];
}