数据在内存中的存储

1.整数在内存中的存储

整数的二进制表示方法有三种:即原码,反码和补码。

原码:直接将数值按照正负数的形式翻译成二进制的就是原码。

反码:将原码的符号位不变,其他位一次按位取反就可以。

补码:反码+1就可以得到。

对于整形来说,数据存放内存中其实就是存放补码。原因在于,使用补码,可以将符号位和数值域统一处理。

2.大小端字节序和字节序

在调试窗口中观察内存的时候,为了方便展示,展示的是16进制的值。

存储的顺序是倒过来的。

大端字节序是高地址存储低位,把低位字节的内容存储到高地址处;

小端字节序是低地址存储低位,把高位字节的内容存储到高地址处。

为什么会有大小端模式之分呢?

因为在计算机系统中,我们以字节为单位的,每个地址单元都对应着一个字节,一个字节为8个比特位,但是在C语言中,除了8bit的char之外,还有16bit的short型,32bit的long型,另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节数,那么必然存在一个如何将多个字节安排的问题,因此就导致了大端存储和小端存储的问题。

字节序相关的练习题

设计一个小程序来判断当前机器的字节序(百度笔试题)

//设计一个小程序来判断当前机器的字节序(百度笔试题)
#include <stdio.h>

int main(void)
{
	int n = 1;
	if (*(char*)&n == 1)
		printf("小端\n");
	else
		printf("大端\n");
	return 0;
}

打印出来是”小端“。给一个n赋值为1,1的16进制是0x00 00 00 01,小端存储是01 00 00 00 

大端存储是 00 00 00 01,n是一个整数,四个字节,怎么判断是大小端存储呢?

这里取地址&n,强制类型转换为(char*),转换为(char*)才能只拿出 一个字节,然后解引用,*(char*)&n,如果拿出的第一个字节是1,就是小端存储,如果拿出的是0那就是大端,强制类型转换的时候不管是大端还是小端,都只会拿出最后一个字节。

if(* (char *)&n =1),printf("小端\n"),else大端,如果要分装成一个函数呢?check_sys用ret接收,返回类型是int 

//设计一个小程序来判断当前机器的字节序(百度笔试题)
#include<stdio.h>
int check_sys()
{
	int n = 1;
	return *(char*)&n;
}
int main(void)
{
	int ret = check_sys();
	if (ret == 1)
		printf("小端\n");
	else
		printf("大端\n");
	return 0;
}

signed char类型的取值范围是-128 ~ 127,unsigned char类型的取值范围是0~255。

unsigned char 最高位不是符号位,高位补0,11111111最高位补0就是 00000000 00000000 00000000 11111111,以%d形式打印,内存中存的是整数,一有符号数的形式打印,看高位是0,说明是正数,整数的原码补码相同,直接打印出8个1,就是255.

下面做一个题。

题目一:

#include<stdio.h>
int main(void)
{
	char a = -1;
	signed char b = -1;
	unsigned char c = -1;
	printf("a=%d, b=%d,c=%d", a, b, c); //-1  -1  255
	//这里char 到底是有符号的char还是无符号的char是取决于编译器的
	//在VS上char==signed char
	return 0;
}

题目二:

#include<stdio.h>
int main(void)
{
	int n = -128;
	printf("%u\n", n);//4294967168,为什么没有打印出-128呢?
	//-128的原码是 10000000 00000000 00000000 10000000
	//		反码是 11111111 11111111 11111111 01111111 ,符号位不变,其他位置按位取反
	//补码是反码+1 11111111 11111111 11111111 10000000 ,a里面只存了八个比特位,存10000000
	//%u的形式打印,认为a里面存放的是无符号数,a是char类型,高位符号位,整型提升为
	//11111111 11111111 11111111 10000000,无符号数直接打印出整型提升的值,就打印出 4294 9671 68
	return 0;
}

题目三:

#include<stdio.h>
#include<string.h>
int main(void)
{
	char a[1000];
	int i;
	for (i = 0; i < 1000; i++)
	{
		a[i] = -1 - i;
	}
	printf("%zd", strlen(a));//255
	return 0;
}

打印出来255,为什么?

strlen求的是字符长度,打印斜杠\0之前的字符个数,统计的是\0(ASCII码之前的字符个数)

题目四: 

#include<stdio.h>
//X86环境下,小端字节序
int main(void)
{
	int a[4] = { 1,2,3,4 };
	int* ptr1 = (int*)(&a + 1);
	int* ptr2 = (int*)((int)a + 1);
	printf("%x,%x", ptr1[-1], *ptr2);//4,2000000
	return 0;
}

为什么会打印出这个结果,下面解释一下:

 

 

 3.浮点数在内存中的存储

常见的浮点数有:3.1415,1E10等,浮点数家族包括:float,double,long double类型,浮点数表示范围:float.h中定义。

下面做一道练习:

#include<stdio.h>

int main(void)
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);

	*pFloat = 9;
	printf("num为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

 n赋值为9,&n取出来是(int*)类型的,强制类型转换为(float*)类型的,赋值给pFloat,相当于Pfloat也是指向n地址,*pFloat解引用访问4个字节,n以整形方式打印出来,是9,把n的地址取出来放到pFloat中去,浮点型类型的指针解引用向后访问4个字节,以Float的形式访问,证书和浮点数在内存中的存储方式不一样。

*pFloat赋值为9,打印出来的是9.00000,以浮点型类型打印出来,以整数的方式打印是不对的。

这里可理解为不同的人看问题的方式不一样

3.1浮点数存的过程

IEEE 754对有效数字M和指数E,还有一些特殊的规定。

浮点数在内存中的存储是V=(-1)的s次方乘以m乘以2的E次方

V=(-1)^S * M * 2^E

整数在内存中的存储存的是二进制的补码。

举个例子,5.5转换为二进制是101.1,写成科学计数法是1.011*2的2次方,写成浮点数V=(-1)的0次方乘以1.011乘以2的2次方,s=0,M=1.011,E=2,所以浮点数的存储就是S,M,E相关的值。

前面说过,1<=M<2,也就是说,M可以写成1.xxxxxxx的形式,其中xxxxxx表示小数部分,

IEEE 754说过,在计算机内部保存M的时候,默认这个数的第一位数字总是1,因此可以被省略,只保存后面的xxxxxx部分,比如保存1.01的时候,只存01,等到读取的时候,再把第一位的1加上去,这样做的目的是节省一位有效数字。以32位浮点数为例子,留给M的只有32位,将第一位的1舍去之后,等于可以保存24位的有效数字。

至于指数E,情况比较复杂,首先,E作为一个无符号整数,这意味着,如果E为8位,它的取值范围就是0~255;如果E为11位,它的取值范围就是0~2047,但是,科学计数法中是可以出现负数的,所以IEEE 754规定,存入内存的E必须是一个真实的值必须再加上一个中间数,对于8位的E,这个中间数是127,对于11位的E,这个中间数是1023.比如,2^10的E是10,所以保存成32位浮点数是,必须保存成10+127=137,即10001001.

3.2浮点数取的过程

指数E从内存中取出的情况:

E不全为0或者不全为1:这个时候,指数E的计算值减去127(或者1023),得到真实值,再将 有效数字M前加上第一位的1.

比如,0.5的二进制形式为0.1,由于规定整数部分必须为1,即将小数点右移一位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分,补齐0到23位 00000000000000000000000,则其二进制表示形式为

0 01111110 00000000000000000000000

E全为0:这时,浮点数的指数E为1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxxxxx的小数。这样做是为了表示+-0,以及接近于0的很小的数字。

E全为1:这时,如果有效数字M全为0,表示+-无穷大(正负取决于符号位s)

有了这些知识的了解 ,我们再返回来看一下上面的练习为什么会打印出来不一样的结果吧? 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值