Android studio快捷键

Alt+回车 导入包,自动修正

Ctrl+N 查找类

Ctrl+Shift+N 查找文件

Ctrl+Alt+L 格式化代码

Ctrl+Alt+O 优化导入的类和包

Alt+Insert 生成代码(如get,set方法,构造函数等)

Ctrl+E或者Alt+Shift+C 最近更改的代码

Ctrl+R 替换文本

Ctrl+F 查找文本

Ctrl+Shift+Space 自动补全代码

Ctrl+空格 代码提示

Ctrl+Alt+Space 类名或接口名提示

Ctrl+P 方法参数提示

Ctrl+Shift+Alt+N 查找类中的方法或变量

Alt+Shift+C 对比最近修改的代码

Shift+F6 重构-重命名

Ctrl+Shift+先上键

Ctrl+X 删除行

Ctrl+D 复制行

Ctrl+/ 或 Ctrl+Shift+/ 注释(// 或者 )

Ctrl+J 自动代码

Ctrl+E 最近打开的文件

Ctrl+H 显示类结构图

Ctrl+Q 显示注释文档

Alt+F1 查找代码所在位置

Alt+1 快速打开或隐藏工程面板

Ctrl+Alt+ left/right 返回至上次浏览的位置

Alt+ left/right 切换代码视图

Alt+ Up/Down 在方法间快速移动定位

Ctrl+Shift+Up/Down 代码向上/下移动。

F2 或Shift+F2 高亮错误或警告快速定位

代码标签输入完成后,按Tab,生成代码。

选中文本,按Ctrl+Shift+F7 ,高亮显示所有该文本,按Esc高亮消失。

Ctrl+W 选中代码,连续按会有其他效果

选中文本,按Alt+F3 ,逐个往下查找相同文本,并高亮显示。

Ctrl+Up/Down 光标跳转到第一行或最后一行下

Ctrl+B 快速打开光标处的类或方法

最常用快捷键

1.Ctrl+E,可以显示最近编辑的文件列表

2.Shift+Click可以关闭文件

3.Ctrl+[或]可以跳到大括号的开头结尾

4.Ctrl+Shift+Backspace可以跳转到上次编辑的地方

5.Ctrl+F12,可以显示当前文件的结构

6.Ctrl+F7可以查询当前元素在当前文件中的引用,然后按F3可以选择

7.Ctrl+N,可以快速打开类

8.Ctrl+Shift+N,可以快速打开文件

9.Alt+Q可以看到当前方法的声明

10.Ctrl+W可以选择单词继而语句继而行继而函数

11.Alt+F1可以将正在编辑的元素在各个面板中定位

12.Ctrl+P,可以显示参数信息

13.Ctrl+Shift+Insert可以选择剪贴板内容并插入

14.Alt+Insert可以生成构造器/Getter/Setter等

15.Ctrl+Alt+V 可以引入变量。例如把括号内的SQL赋成一个变量

16.Ctrl+Alt+T可以把代码包在一块内,例如try/catch

17.Alt+Up and Alt+Down可在方法间快速移动

Android Studio
提问时间 2014-09-03 11:43
uij6787的头像
uij6787
2 0 0
答案被采用率: 0%

内容概要:本文详细介绍了一个基于MATLAB实现的SWT-SVM故障诊断分类预测项目,通过平稳小波变换(SWT)进行信号去噪与尺度特征提取,结合支持向量机(SVM)实现机械设备故障的智能分类。项目涵盖从数据采集、预处理、SWT分解、特征提取与降维(如PCA)、模型训练与优化(含交叉验证、网格搜索、贝叶斯优化)、性能评估(混淆矩阵、ROC曲线、F1分数等)到结果可视化与GUI界面开发的完整流程。系统具备高可解释性、强鲁棒性和良好工程集成能力,适用于行业设备健康监测,并提供完整的代码实现与部署方案。; 适合人群:具备一定MATLAB编程基础,熟悉信号处理与机器学习算法的高校研究生、科研人员及工业领域从事设备故障诊断、智能运维的工程师和技术人员。; 使用场景及目标:①应用于智能制造、风电、轨道交通、石化、航空航天等领域的设备故障早期检测与健康状态评估;②构建端到端的智能诊断pipeline,提升诊断准确率与自动化水平;③通过GUI交互界面实现数据导入、模型训练、实时预测与结果导出,服务于科研教学与工业实际部署。; 阅读建议:建议读者结合文中提供的完整MATLAB代码与GUI设计,逐步复现各模块功能,重点关注SWT参数择、特征降维策略、SVM超参数优化及模型评估方法。在实践过程中调试信号处理流程与分类性能,深入理解算法原理与工程落地的关键环节。
【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了Matlab代码实现。该模型结合了MBLS在函数逼近和学习能力方面的优势,以及Copula理论在处理变量非高斯分布和捕捉变量间复杂相关性结构的能力,能够有效处理光伏出力的不确定性与时空相关性,从而提高预测精度和可靠性。此外,文档还列举了个相关的科研方向和技术应用实例,如风电预测、虚拟电厂调度、风光制氢合成氨系统优化、目标优化算法等,展示了其在电力系统、新能源、优化调度等个领域的广泛应用前景。; 适合人群:具备一定编程基础,尤其是熟悉Matlab编程语言,从事新能源、电力系统、优化调度、机器学习等相关领域研究的科研人员和研究生。; 使用场景及目标:①应用于光伏发电功率的高精度时空概率预测,为电网调度、能源管理和市场交易提供决策支持;②作为研究Copula理论和MBLS算法在复杂非线性系统建模中应用的案例,促进相关算法的改进与创新;③结合文中提到的其他优化算法(如目标优化、智能优化算法)和应用场景(如虚拟电厂、综合能源系统),构建更复杂的系统优化与决策模型。; 阅读建议:此资源不仅提供了具体的代码实现,还涵盖了丰富的科研背景和应用方向。建议读者在学习过程中,不仅要理解MBLS和Copula理论的核心思想与实现细节,还应结合文中提及的其他技术(如优化算法、深度学习模型)进行横向对比和综合应用,以拓宽研究视野。同时,鼓励读者基于提供的代码框架,针对具体问题进行参数调整和模型改进,通过实践加深对理论的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值