推荐系统简介
推荐系统的目的:
- 针对信息过载做出的系统
- 解决如何从大量亻中找到自己感兴趣的信息
- 解决如何让自己生产的信息脱颖而出,受到大众的喜爱
目的:
- 让用户更快更好的获取到自己需要的内容
- 让内容更快更好的推送到喜欢它的用户手中
- 让网站更有效的保留用户资源
- 好的推荐系统-----让三方共赢
推荐系统的基本思想
推荐思想
- 利用用户和物品的特征信息,给用户推荐那些具有用户喜欢的特征的和操。
- 利用用户喜欢过的物品,给用户推荐与他喜欢过的和操相似的物品利用和用户相似的其他用户,给用户推荐那些和他们兴趣爱好相似的其他用户喜欢的物品
思想
- 知你所想,精准推送
- 物以类聚
- 人以群分
推荐系统的数据分析
- 要推荐物品或内容的元数据,例如,关键字,分类标签,基因描述等
- 系统用户的基本信息,例如性别,年龄,兴趣标签等
- 用户的行为数据,可以转化为对物品或者信息的偏好,根据应用本身的不同,可能包括用户对物品的评分,用户查看物品的记录,用户的购买记录等,这些用户的偏好信息可以分为两类
- 显式的用户反馈:这类是用户在网站上自然浏览或者使用网站以外,显式的提供反馈信息,例如用户对物品的评分,或者对物品的评论
- 隐式的用户反馈:这类是用戾在使用网站时产生的数据,隐式的反应了用户对和操的喜好,例如用户购买了某物品,用户查看了某物品的信息等等
推荐系统的分类
实时性分类
- 离线
- 实时
根据推荐是否个性分分类
- 基于统计的推荐
- 个性化推荐
根据推荐原则分类
- 基于相似度的推荐
- 基于知识的推荐
- 基于模型的推荐
数据源分类 - 基于人口统计学的推荐
- 基于内容的推荐
- 基于协同过滤的推荐