LCS-最大公共子序列(DP问题)

对两个字符串求最大公共子序列,子序列意味着不是连续的序列。

    子问题:LCS(s1,s2)表示最大公共子序列

      首先基于一个判断,

        1)s1和s2有相同的结尾x,那么x一定在最大公共子序列中,  LCS(s1,s2)=LCS(s1[:-1],s2[:-1])+1

        2)s1和s2没有相同结尾,那么LCS(s1,s2)=max{ LCS(s1[:-1],s2),LCS(s1,s2[:-1]) }

            可以写成下面的表达式,C[i,j]表示s1的前i个字符和s2的前j个字符的最大公共子序列,其中i=0或者j=0时,表示其中一个字符串为空,这时候LCS=0

        

        伪代码:

                int lcs(string str1, string str2, vector<vector<int>>& vec) {  
                        int len1 = str1.size();  
                        int len2 = str2.size();  
                        vector<vector<int>> c(len1 + 1, vector<int>(len2 + 1, 0));   #初始化(len1+1)个vector<int>(len2 + 1, 0)
                        for (int i = 0; i <= len1; i++) {  
                            for (int j = 0; j <= len2; j++) {  
                                if (i == 0 || j == 0) {  
                                    c[i][j] = 0;  
                                 }  
                                else if (str1[i - 1] == str2[j - 1]) {  
                                    c[i][j] = c[i - 1][j - 1] + 1;  
                                }  
                                else if (c[i - 1][j] >= c[i][j - 1]){  
                                    c[i][j] = c[i - 1][j];  
                                }  
                                else{  
                                    c[i][j] = c[i][j - 1];  
                                }  
                            }  #for (int j = 0; j <= len2; j++) {
                        }  #for (int i = 0; i <= len1; i++) {  
  
                return c[len1][len2];  
            }  

                

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值