faiss探索 https://www.jianshu.com/p/43db601b8af1https://www.jianshu.com/p/d35198c5bc23https://www.cnblogs.com/houkai/p/9316155.html晚上再整理
Word2Vec 版权声明:本文为博主原创文章,可随意转载,但请注明作者和出处。 https://blog.csdn.net/LeYOUNGER/article/details/78206832 摘要关键词: Glove,word2vec,NNLM,余弦相似度参考:一个非常好...
主动学习——active learning 本文转载自:https://www.cnblogs.com/hust-yingjie/p/8522165.html阅读目录写在前面什么是active learning?active learning的基本思想active learning与半监督学习的不同参考文献1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning...
部分监督学习 部分监督学习(Partially Supervised Learning):(1)已标注和无标注数据中进行学习(Learning from Labeled and Unlabeled Examples) 【LU学习(LU Learning)】 【每个类别的数据包含少量的已标注数据和大量的无标注数据】(2)正例和无标注数据中学习(Learning from Positive and Unlab...
Learning to Rank for IR的评价指标—MAP,NDCG,MRR MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。 例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关...
基于矩阵分解的推荐算法 摘自:https://www.cnblogs.com/bonelee/p/7126144.html一,基于矩阵分解的推荐算法相关理论介绍 我们知道,要做推荐系统,最基本的一个数据就是,用户-物品的评分矩阵,如下图1所示 图1 矩阵中,描述了5个用户(U1,U2,U3,U4 ,U5)对4个物品(D1,D2,D3,D4)的评分(1-5分),- 表示没有评分,...
4篇YouTube推荐系统论文, 一起来看看别人家的孩子 一篇去年的文章,但是写的很好。因此转载记录。 —————————————————————————————————— 最近一直在花时间研究和实现一些推荐算法,并且搭建系统在产品中进行测试。我读了一些关于Netflix等网站“如何使用Collaborative Filtering来预测用户对其他影片的打分”的文章,之前也曾在Pinterest目睹了Related Pin从传统的计算co-occ...
awk求和、平均值、最大最小值 1、求和cat data|awk '{sum+=$1} END {print "Sum = ", sum}'2、求平均cat data|awk '{sum+=$1} END {print "Average = ", sum/NR}'3、求最大值cat data|awk 'BEGIN {max = 0} {if ($1>max) max=$1 fi} END {print "Max=...
谷歌机器学习43条规则:机器学习工程的最佳实践经验 机器学习目前已经有非常多的应用,它相比于传统的软件工程,最大的特点即我们编写的是学习过程,因此系统能根据数据改善性能。正因为这种特性,从嵌入循环神经网络的输入法到嵌入卷积神经网络的摄像头,机器学习应用已经无处不在。但在真正做产品时,我们需要的不是机器学习专家或顶尖的深度学习技术,而是大量的模型压缩调优、部署测试和模型交互等。因此,在实践中成为一名出色的工程师极为重要。这篇文章选自谷歌开发者中文博客...
python os.system重定向stdout到变量 ,同时获取返回值(os.popen,commands.getstatusoutput) 一个很实用的小技巧。记录一下。Python执行系统命令的方法 os.system(),os.popen(),commands最近在做那个测试框架的时候发现 Python 的另一个获得系统执行命令的返回值和输出的类。最开始的时候用 Python 学会了 os.system() 这个方法是很多比如 C,Perl 相似的。os.system('cat /proc/cpuinfo')但是这样是无法获得到输...
TransE算法(Translating Embedding) http://blog.csdn.net/u011274209/article/details/50991385一、引言 网络上已经存在了大量知识库(KBs),比如OpenCyc,WordNet,Freebase,Dbpedia等等。这些知识库是为了各种各样的目的建立的,因此很难用到其他系统上面。为了发挥知识库的图(graph)性,也为了得到统计学习(包括机器学习和深度学习)的优势,我...
论文笔记:Deep neural networks for YouTube recommendations 论文提要YouTube如今是工业界最大和最复杂的推荐系统之一,本文作者提出了一种高效的基于深度学习的推荐系统。该系统和工业界经典的推荐流程一样,系统分为候选集生成(也称为搜索或召回),排序两个阶段,这两个阶段分别使用了一个深度神经网络,本文从实践的角度对特征处理,模型训练和调优都有详细介绍。解决的问题YouTube是世界上最大的视频创作及分享平台,其视频推荐的面临的主要问题有: 1. 海量数据:现...
Python中如何使用*args和**kwargs 原文英文地址:https://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/原文翻译地址:http://python.jobbole.com/83476/Python中如何使用*args和**kwargs,或者说,在Python中如何使用可变长参数列表。函数定义这是一种特殊的
python在linux下代码调试pdb python -m pdb myscript.pyor import pdb; pdb.set_trace()命令解释break 或 b 设置断点设置断点continue 或 c继续执行程序list 或 l查看当前行的代码段step 或 s进入函数
Spark中存在的各种2G限制 motivation 动机The various 2G limit in Spark. Spark中存在的各种2G限制问题. 1. When reading the data block is stored in the hard disk, the following code fragment is called. 获取缓存在本地硬盘的数据块时,会调用以下代码片段
如何轻松愉快地理解条件随机场(CRF)? 理解条件随机场最好的办法就是用一个现实的例子来说明它。但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。于是乎,我翻译了这篇文章。希望对其他伙伴有所帮助。原文在这里[http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/]想直接看英文的朋友可以直接点进去了。我在
awk awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息awk处理过程: 依次对每一行进行处理,然后输出awk命令形式:awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file [-F|-f|-v] 大参数,-F指定分隔符,-f调用脚本,-v定义变量 va
数据库索引的实现原理 强烈建议参阅链接:http://www.linezing.com/blog/?p=798#nav-1说白了,索引问题就是一个查找问题。。。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向