在Intel GPU上使用IPEX-LLM进行高效嵌入:LangChain实战指南
引言
在当今数据驱动的时代,拥有高效的嵌入技术是实现信息检索和问答系统等应用的关键。本文将介绍如何在Intel GPU上利用LangChain结合IPEX-LLM进行嵌入任务的优化。我们将探讨相关的基础设置、代码示例和常见问题解决方案。
主要内容
环境准备
为充分利用Intel GPU上的IPEX-LLM技术,用户需遵循不同的预备步骤。Windows用户需更新GPU驱动并安装Conda,而Linux用户则需安装Intel® oneAPI Base Toolkit及相关驱动。
Windows用户:
- 请访问Windows IPEX-LLM安装指南并遵从安装先决条件。
Linux用户:
- 请访问Linux IPEX-LLM安装指南并遵从安装先决条件。
设置
在安装好前置条件后,创建一个Conda环境并启动Jupyter服务:
%pip install -qU langchain langchain-community
%pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
%pip install sentence-transformers
上述设置完成后,您即可进行IPEX-LLM的使用。
运行时配置
根据设备类型设置环境变量,以获取最佳性能:
Windows用户(Intel C

最低0.47元/天 解锁文章
1568

被折叠的 条评论
为什么被折叠?



