使用IPEX-LLM在Intel CPU和GPU上高效运行大语言模型

在当今AI应用中,高效运行大语言模型(LLM)是一项关键需求。而IPEX-LLM是一个专为Intel CPU和GPU(如iGPU、Arc、Flex和Max等)优化的PyTorch库,能够以极低的延迟运行LLM。本文将通过LangChain与IPEX-LLM的结合,为您展示如何进行文本生成任务。

技术背景介绍

IPEX-LLM通过支持Huggingface格式的模型,并能自动转换为低比特率格式,极大地提高了推理效率。其设计目标就是在本地PC上利用Intel硬件以最低延迟运行LLM。

核心原理解析

IPEX-LLM采用低比特率模型格式,通过减少内存消耗和提高推理速度来实现高效的模型运行。同时,它还支持在不同设备之间的便捷模型迁移,可以节省存储空间并提高加载效率。

代码实现演示

以下代码示例展示了如何使用LangChain和IPEX-LLM加载和运行Vicuna-1.5模型:

# 安装必要的库
%pip install -qU langchain langchain-community
%pip install --pre --upgrade ipex-llm[all]

import warnings
from langchain.chains import LLMChain
from langchain_community.llms import IpexLLM
from langchain_core.prompts import PromptTemplate

# 忽略不必要的警告
warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*")

# 定义提示模板
template = "USER: {question}\nASSISTANT:"
prompt = PromptTemplate(template=template, input_variables=["question"])

# 加载本地模型
llm = IpexLLM.from_model_id(
    model_id="lmsys/vicuna-7b-v1.5",
    model_kwargs={"temperature": 0, "max_length": 64, "trust_remote_code": True},
)

# 创建链
llm_chain = prompt | llm

# 进行文本生成
question = "What is AI?"
output = llm_chain.invoke(question)
print("Output:", output)

保存和加载低比特模型

为节省存储空间和提高效率,您可以将低比特模型保存到磁盘,并在需要时加载:

# 保存低比特模型
saved_lowbit_model_path = "./vicuna-7b-1.5-low-bit"
llm.model.save_low_bit(saved_lowbit_model_path)
del llm

# 从保存的路径加载低比特模型
llm_lowbit = IpexLLM.from_model_id_low_bit(
    model_id=saved_lowbit_model_path,
    tokenizer_id="lmsys/vicuna-7b-v1.5",
    model_kwargs={"temperature": 0, "max_length": 64, "trust_remote_code": True},
)

# 使用加载的模型
llm_chain = prompt | llm_lowbit
output = llm_chain.invoke(question)
print("Loaded Model Output:", output)

应用场景分析

IPEX-LLM非常适合需要低延迟和高效率的本地推理场景,如实时文本生成、对话机器人等应用。其对Intel硬件的优化使得普通PC用户也能够运行大规模语言模型。

实践建议

  • 模型管理:在不同机器之间迁移模型时,善用低比特率模型以节省空间。
  • 优化配置:根据具体的应用场景调整model_kwargs中的参数,如温度和最大长度,以得到更优的生成效果。

如果遇到问题欢迎在评论区交流。

—END—

### vLLM 部署大模型不使用 GPU 的方法替代方案 对于在资源受限环境中部署大型语言模型的需求,vLLM 提供了一些有效的解决方案来减少对昂贵硬件的依赖。尽管 TGI 支持 GPTQ 模型服务的部署,在单卡上运行启用了 continuous batching 功能的大规模模型[^1],然而当完全不需要 GPU 时,则需考虑其他策略。 #### 使用 CPU 进行推理优化 一种可行的方式是在高性能多核CPU服务器上执行推断操作。通过利用高度并行化的线程池以及针对特定架构编译后的库文件(如 Intel MKL-DNN),可以显著提高处理速度。此外,量化技术也可以应用于降低精度损失的同时加快计算过程。 #### 边缘设备上的轻量级版本 开发专门用于边缘计算平台的小尺寸变体是另一种途径。这些经过裁剪过的网络结构保留了原始功能特性但参数数量大幅削减;因此能够在低功耗 ARM 架构处理器甚至移动电话端高效运作。 #### 基于云的服务提供商 如果本地基础设施无法满足需求,还可以借助第三方云计算服务商所提供的按需实例类型完成任务。这类供应商通常会提供多种配置选项让用户灵活选择最适合自己应用场景的产品组合——即使是没有专用图形加速器也能获得不错的性能表现。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cpu" model_name_or_path = "your-model-path" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) input_text = "Your input text here." inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值