线性代数
文章平均质量分 73
asdfghwunai
这个作者很懒,什么都没留下…
展开
-
07 点积与对偶性
I.点积的几何意义描述了向量w在向量v上的投影的长度与向量v的长度的乘积为负值的情况是投影与v向量方向相反II. 点积为啥与顺序无关当v和w长度一样时,v*w=w*v显而易见当v和w长度不等时,使用相似原理证明III. 点积为啥那样计算我们会有个疑问: 对应坐标相乘并相加为啥就是投影长度*向量长度?1.从二维空间到一维空间的线性变换考虑...原创 2018-12-04 16:32:55 · 880 阅读 · 0 评论 -
10 特征值与特征向量
有趣的对话数学是干什么的?特征值和特征向量特征值和特征向量到底是干什么的?为啥这样写就能算出来你想要的特征值和特征向量?1.预备知识2.直观的描述他俩的意义有的向量线性变换后离开了原来的张成空间还有的向量留在了以前的张成空间,只是被拉伸了。其他向量都是旋转了有向量旋转了,有向量只是拉伸。只是拉伸的就是特征向量,而拉伸长度就是特征...原创 2018-12-06 18:21:31 · 672 阅读 · 0 评论 -
09 基变换
不同坐标系下同一位置的不同描述想象我们在地球上的一个位置,描述这个位置不同国家肯定有不同的描述,但每个国家下的人都能通过自己国家的描述准备到达那个位置。之所以不同的描述,原因就是不同坐标系下。在向量空间中,向量的坐标其实和隐含的俩基向量是联系在一起的。只给坐标不行,还要有个坐标系你才能画出位置。一组数可以用来表达坐标,而下图的i基和j基是坐标系下的俩默认基向量。...原创 2018-12-05 21:27:26 · 363 阅读 · 0 评论 -
06-1 非方阵
I.老向量和新向量所在的空间前面讲的线性变换后丢失了维度,是说基向量的张成空间的维度降低了,而输入向量x和输出向量v所在的维度没变。这里x和v向量都是三元数描述的,也就是说他俩还都在三维空间中II.非方阵1.几何意义非方阵改变了向量的维数,输入向量是2维,输出向量是3维二维空间到三维空间的张成空间只是一个面(当然还可能共线啊),但向量描述是三个数的。这俩空...原创 2018-12-03 13:22:31 · 529 阅读 · 0 评论 -
06 逆矩阵,列空间,零空间
Table of Contents I. 重申矩阵的作用II. 矩阵和线性方程组1.矩阵的用途2.从线性变换角度解释线性方程组3.矩阵A扭曲空间的几种效果(1) 共线(2) 不共线III.矩阵的逆1.矩阵逆的几何意义2.逆矩阵与行列式与方程组的解(1)逆矩阵与行列式的取值(2) 行列式为0一定不存在解吗?IV. 秩1.秩的几何意义2....原创 2018-12-03 11:47:17 · 1416 阅读 · 0 评论 -
04-1 三维空间的线性变换
三维矩阵的几何意义经过前两节二维空间的线性变换的探究,我们可以知道二维矩阵就是为了描述二维空间的线性变换的,同理,三维矩阵就是描述三维空间的线性变换的1.变换前的三个基向量是这样子的2.变换后的三个基向量的位置,图上保留了原空间的x,y,z轴3.用这三个新的基向量构成一个新的三维矩阵,这个矩阵就描述了线性变换,每一列是一个新空间下的基向量向量在线性变换后的位...原创 2018-12-01 20:34:58 · 2285 阅读 · 0 评论 -
04 矩阵乘法与线性变换复合
矩阵相乘的几何意义矩阵相乘代表两个线性变换的相继作用旋转矩阵与剪切矩阵相乘 相当于 先旋转再剪切矩阵为啥那样乘第一步:找出i基(0,1) 经过 第一次变换后 i基去哪了?新的i基就是M1矩阵的第一列(e,g)第二步:找出i基经过M2矩阵的变换后又到哪了?方法就是矩阵M2 和 i基 相乘同理,j基(0,1) 经过M1和M2两次变换后...原创 2018-12-01 19:43:09 · 730 阅读 · 1 评论 -
08-1 从线性变换角度看叉积
I.问题描述我们在08小节给出一个计算三维向量叉积的公式,但是这个公式为啥是那样呢?为啥这样计算出的向量满足三条性质呢?(1).长度=平行四边形的面积 (2).方向垂直于向量v和向量u (3).满足右手定则通过公式推理,我们可以得出满足两条性质。但是我们下面用更直观的解释。II.预备知识1.对偶性指和一个向量点积 和 用这个向量进行线性变换 等...原创 2018-12-05 10:05:07 · 462 阅读 · 0 评论 -
03 矩阵与线性变换
1.线性变换的实质就是一个名字叫的好听点的函数2.为啥叫变换而不叫函数呢?变换有运动之意。3.变换与网格线(1)线性变换说明:白色网格线是原始的网格线,蓝色的网格线是变换后的网格线。(2)不知该怎么称呼的变换,反正不是线性变换 4.线性变换的定义满足两条性质:(1)直线依然是直线(更深的意思是变换后的网格线等距且平行分布);(2...原创 2018-12-01 11:05:38 · 318 阅读 · 0 评论 -
02 线性组合, 张成的空间与基
基向量基向量不是唯一的,你可以选择好多种方向的单位长度的向量作为基向量。 张成空间1.俩向量(1)不共线时,是代表一个大平面(2)共线时,是代表一条数轴2. 三向量(1)线性相关时第三个向量正好落在前两个向量的张成平面上时,张成空间还是那个平面(2)线性无关时移动红色基就相当于在移动前两个基所组成的张成平面,张成空间是所有三维空间...原创 2018-11-30 22:07:16 · 587 阅读 · 0 评论 -
01 向量是啥?
向量的几何意义向量就是描述物体在空间中的位置向量相加用于描述分几步走的运动1.一条数轴下2+5相加 就好比分两步运动,第一步走了2,第二步走了5,相当于一共走了72.两条数轴下类比之下,这种计算方式也是为了表示成运动,不是瞎表示的向量数乘数字就是标量,用于缩放向量...原创 2018-11-30 21:28:23 · 551 阅读 · 0 评论 -
08 叉积的理解
I. 二维向量的叉积设有二维向量和,则注意两个向量的叉积为一个整数,相当于所围成的平行四边形的面积。二维下空间下,结果就是一个数,不要把他们的结果当成一个有方向的向量正负用右手定则II. 怎么计算呢?把向量1写到第一列,把向量2写到第二列,算行列式的结果(行列式就相当于二维向量所围的面积相比原空间缩放的比例)解释:说明此正交二维向量叉积的大小就是1...原创 2018-11-30 17:02:24 · 567 阅读 · 0 评论 -
11 抽象向量空间
向量到底是什么呢?把他理解为空间中的箭头?实数对?还是某种更深层的意义?熟悉基变换的人 感觉 坐标描述太随意,因为依赖于基向量,基向量不同,位置就不同。行列式给出一个变换对一个面积的影响;而特征向量是在变换过程中还在以前该向量的张成空间(一个向量的张成空间是一条线)。刚开始无论在什么坐标系下,变换后,行列式的值和特征向量都不会改变。所以这俩量不依赖于特定的坐标...原创 2018-12-06 22:51:14 · 584 阅读 · 1 评论