题目描述
有N 个人要参加国际象棋比赛,该比赛要进行 K 场对弈。每个人最多参加两场对弈,最少参加零场对弈。每个人都有一个与其他人不相同的等级(用一个正整数来表示)。
在对弈中,等级高的人必须用黑色的棋子,等级低的人必须用白色的棋子。每个人最多只能用一次黑色的棋子和一次白色的棋子。为增加比赛的可观度,观众希望 K 场对弈中双方的等级差的总和最小。
比如有 7 个选手,他们的等级分别是 30,17,26,41,19,38,18,要进行 3 场比赛。最好的安排是选手 2 对选手 7,选手 7 对选手 5,选手 6 对选手 4。此时等级差的总和等于 (18−17)+(19−18)+(41−38)=5达到最小。
输入格式
第一行两个正整数 N,K。
接下来有 N 行,第 i 行表示第 i−1 个人等级。
输出格式
在第一行输出最小的等级差的总和。
输入输出样例
输入 #1
7 3 30 17 26 41 19 38 18
输出 #1
5
说明/提示
数据范围及约定
- 在 90% 的数据中,1≤N≤3000;
- 在 100% 的数据中,1≤N≤100000。
保证所有输入数据中等级的值小于 109,1≤K≤N−1。
#include<bits/stdc++.h>
using namespace std;
using namespace std;
int main()
{
int n,k,i,a[100001],b[100001],ans=0;
scanf("%d%d",&n,&k);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n+1);
for(i=1;i<=n-1;i++)
b[i]=a[i+1]-a[i];
sort(b+1,b+n);
for(i=1;i<=k;i++)
ans+=b[i];
printf("%d",ans);
return 0;
}